
TECHNICAL ADVANCE

A hybrid kinetic and constraint-based model of leaf
metabolism allows predictions of metabolic fluxes in
different environments

Sanu Shameer1,† , YuWang2,† , Pedro Bota1 , R. George Ratcliffe1 , Stephen P. Long2,3 and Lee J. Sweetlove1,*
1Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK,
2Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, and
3Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

Received 12 March 2021; revised 8 October 2021; accepted 20 October 2021; published online 26 October 2021.

*For correspondence (e-mail lee.sweetlove@plants.ox.ac.uk).
†These authors contributed equally to this work.

SUMMARY

While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network

fluxes, it does not readily capture the response to environmental variables without being coupled to other

modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max)

leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photo-

synthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative for-

mulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn,

fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was

repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic

module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumula-

tion of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions

of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and

elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose

from the leaf at high light, due to altered starch–sucrose partitioning, and altered daytime flux modes in the

tricarboxylic acid cycle at elevated CO2. Mitochondrial fluxes were notably different between growing and

mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes pre-

dicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.

Keywords: technical advance, metabolic modelling, flux balance analysis, kinetic modelling, Glycine max,

central carbon metabolism.

INTRODUCTION

Improving the efficiency of photosynthesis has been pro-

posed as a feasible, and underexploited, means to increase

crop yield (Long et al., 2019; Zhu et al., 2010). Recent

attempts to engineer increased photosynthetic rates have

resulted in improved crop productivity in field trials, pro-

viding successful test-of-concept (Kromdijk et al., 2016;

López-Calcagno et al., 2020; South et al., 2019; Yoon et al.,

2020). Despite these successes, the photosynthetic energy

conversion efficiency (εc; the fraction of intercepted radia-

tion converted into plant mass) of current improvements is

still far from the theoretical maximum (Long et al., 2019;

Zhu et al., 2008, 2010). Successful intervention to increase

εc depends on our understanding of the biochemical limita-

tions of photosynthetic energy conversion. This is chal-

lenging because photosynthesis is directly or indirectly

affected by other metabolic pathways (Paul and Foyer,

2001; Paul and Pellny, 2003).

Mathematical modelling is a powerful approach for

understanding the photosynthetic process. Farquhar et al.

(1980) developed a steady-state model of C3 photosynthe-

sis, which assumes photosynthesis cannot proceed faster

than the limit set by the carboxylase activity or the electron

transport rate. This model has been used to predict steady-
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state CO2 assimilation rates and has proved robust under

various environmental conditions, including light intensity,

[CO2] and [O2]. The Farquhar model and its later versions

have been extensively used in other models of leaf metab-

olism (Caemmerer, 2000; Heckmann et al., 2013; Yin and

Struik, 2009). It is also commonly implemented as a sub-

module in multi-scale models such as crop growth models

and land surface exchange models (Cox et al., 1999;

Miguez et al., 2009; Sellers et al., 1996; Vos et al., 2010).

However, the Farquhar model does not describe the indi-

vidual metabolic reactions of photosynthesis, and so it

cannot be used directly to study the fluxes through the leaf

metabolic network or the impact of manipulating individ-

ual photosynthetic enzymes on the efficiency of the whole

metabolic system. For insights into these processes, it is

necessary to turn to other metabolic modelling approaches,

such as constraint-based modelling and kinetic modelling.

Constraint-based modelling is a metabolic modelling

approach that uses a set of physical, biochemical, and ther-

modynamic constraints to define a solution space that

describes all feasible flux distributions supported by a sys-

tem of metabolic reactions of defined stoichiometry. This

modelling approach does not require enzyme/metabolite

concentrations or kinetic parameters (Beard and Qian,

2005). The most commonly implemented formulation, flux

balance analysis (FBA), has been extensively used to study

leaf metabolism in C3 plants (Arnold and Nikoloski, 2014;

Chatterjee et al., 2017; Cheung et al., 2014, 2015; de Oli-

veira Dal’Molin et al., 2010; Herrmann et al., 2019; Laksh-

manan et al., 2015; Mintz-Oron et al., 2012; Poolman et al.,

2013; Shameer et al., 2019; Yuan et al., 2016). FBA is capa-

ble of modelling steady-state metabolic fluxes in stoichio-

metric models (Orth et al., 2010), and current FBA leaf

models are capable of modelling photosynthesis in grow-

ing and fully expanded leaves. It is possible to include both

day- and night-time metabolism in the model, providing a

more accurate description of leaf metabolism over the diel

cycle (Cheung et al., 2014; Töpfer et al., 2020).

FBA models are based on reaction stoichiometries and

require only a few biochemical and thermodynamic con-

straints. As a result, these models can be used to simulate

flux distributions through extremely large metabolic net-

works, even genome-scale metabolic networks composed

of more than 8000 reactions and metabolites, in a compu-

tationally efficient manner (Simons et al., 2014). FBA

models are composed of linear equations and while this

makes them computationally efficient, most biological pro-

cesses are non-linear and FBA models are unable to repre-

sent these non-linear processes directly. This makes it

difficult to directly account for the complex relationship

between kinetic parameters such as KM, metabolite con-

centrations, and flux within the FBA framework.

As a result, FBA models need additional components to

capture the non-linear responses to changes in light and

other environmental variables. For example, environment-

specific biomass compositions (Arnold and Nikoloski,

2014; Poolman et al., 2013), maximum enzymatic activity

(Recht et al., 2014), transcriptomics data (Imam et al., 2015;

Kamsen et al., 2021; Mintz-Oron et al., 2012; Scheunmann

et al., 2018; Siriwach et al., 2020), and metabolomics data

(Kleessen et al., 2015; Pries et al., 2021; Sajitz-Hermstein et

al., 2016) have all been used to constrain FBA models in

response to changes in light, atmospheric CO2 concentra-

tion, nutrient availability, and other environmental vari-

ables. While these approaches have been shown to

improve the predictive power of constraint-based models,

they rely heavily on the availability of context-specific data

to model the non-linear metabolic responses.

Dynamic FBA (dFBA) is another approach that can

account for the non-linear nature of metabolism. The sim-

plest formalism of dFBA, the static optimization algorithm,

involves monitoring concentrations of specific metabolites

during an FBA run, and then using ordinary differential

equations (ODEs) to introduce constraints on appropriate

reaction fluxes for the subsequent FBA run (Grafahrend-

Belau et al., 2013; Schroeder and Saha, 2020; Shaw and

Cheung, 2018). More complicated formalisms of dFBA,

dynamic optimization algorithms, trade off the steady-state

assumption responsible for maintaining the linear nature

of these models for improved representation of the dynam-

ics of metabolic systems. A comprehensive review of

dynamic optimization algorithms has been presented in

Kleessen and Nikoloski (2012).

Non-linear processes can be captured explicitly in

kinetic modelling, which uses a mathematical representa-

tion of reactions in a metabolic network based on rate

equations that account for enzyme kinetics and metabolite

concentrations. Kinetic models, such as those composed

of ODEs, are capable of simulating not only the steady-

state fluxes of the system, but also the dynamic response

of reactions to environmental changes. Many kinetic

models of leaf metabolism focus on photosynthesis and

pathways of related carbon metabolism (Cox et al., 1999;

Fridlyand and Scheibe, 1999; Gombert and Nielsen, 2000;

Laisk and Walker, 1986; Laisk et al., 1989; McGrath and

Long, 2014; Miguez et al., 2009; Morales et al., 2018;

Pearcy et al., 1997; Poolman et al., 2000; Sellers et al.,

1996; Vos et al., 2010; Wang et al., 2014; Woodrow and

Mott, 1993; Zaks et al., 2012; Zhu et al., 2007, 2013). These

range from models describing photosynthesis by two pro-

cesses (Farquhar et al., 1980) to models representing all

discrete steps in the process, combined with light activa-

tion/deactivation of enzymes (Zhu et al., 2013). The ambi-

tion is to extend the metabolic reach of these models, and

most recently a model has been assembled that includes

glycolysis, gluconeogenesis, the tricarboxylic acid (TCA)

cycle, and chloroplastic nitrogen assimilation, as well as

the Calvin cycle, the photorespiration pathway, and starch

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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synthesis (Zhao et al., 2021), Kinetic models have been

used to analyse the control of both steady-state and tran-

sient properties of photosynthesis, and to identify poten-

tial targets for photosynthesis and yield improvement.

However, it can be difficult to obtain accurate measurements

of all the kinetic parameters required for large-scale ODE

models; and numerical integration of ODE systems can be

challenging due to the different time scales of processes

within the model.

Hybrid models composed of ODE and FBA models have

been proposed as a way of addressing the limitations of

both types of modelling, leading to a more accurate

modelling framework that remains computationally tracta-

ble. Inclusion of kinetic equations based on a power-law

formalism for key branch points of the metabolic network

was shown to improve the predictive power of an FBA

model of microbial glycolysis (Pozo et al., 2015). The first

steps in this direction have also been taken for leaf meta-

bolic models. For example, in a constraint-based model of

metabolism across the C3–C4 gradient of the maize leaf,

sub-models of gas-diffusion and RuBisCo kinetics were

used to compute and constrain ribulose-1,5-bisphosphate

(RuBP) carboxylation to oxygenation ratio in the FBA

model (Bogart and Myers, 2016). Similarly, Heckmann et

al. (2013) used non-linear sub-models to constrain net CO2

uptake, RuBisCo activity, bundle-sheath CO2 leakage,

mesophyll phosphoenolpyruvate carboxylase (PEPC),

bundle-sheath C4 acid decarboxylation, glycine decarbox-

ylase, and the exchange of glycine and serine between

bundle sheath and mesophyll to constrain fluxes in the

C4GEM constraint-based model (Oliveira Dal’Molin et al.,

2010).

Here, we describe a hybrid leaf model of unprece-

dented scale, constructed by combining a previously

established ODE model of all discrete steps of photosyn-

thetic metabolism, the e-photosynthesis ODE model (Zhu

et al., 2013), with an FBA model of diel leaf metabolism

(Shameer et al., 2019). We explore two ways of integrat-

ing the two models: a general loosely coupled approach

(LC-ODE-FBA) and a tailored tightly coupled approach

(TC-ODE-FBA). We show how the latter approach, while

more time-consuming to develop and execute, is capable

of capitalizing on the strengths of the individual models

while minimizing their weaknesses. Accurate flux predic-

tions of key photosynthetic parameters such as CO2

assimilation rate, photosystem II (PSII) flux and starch

accumulation are retained by the coupled model, which

can make predictions such as the effect of elevated CO2

on nocturnal respiration rate, and are consistent with the

measurements of field-grown soybean plants. The

broader behaviour of soybean leaf metabolism under

three different light intensities, at elevated atmospheric

[CO2], and in growing versus mature source leaves was

explored using the TC-ODE-FBA model.

RESULTS

LC-ODE-FBA model design

The simplest approach to integrating the e-photosynthesis

model (the ODE model) and a diel leaf FBA model is to use

the fluxes predicted by the more mechanistic ODE model

to constrain the solution space of the FBA model. This was

implemented in the LC-ODE-FBA model consisting of two

modules, the ODE module (e-photosynthesis model) and

an FBA module. The ODE module was run first and the

predicted values for the PSII electron flux (JPSII) and the

ribulose-1,5-bisphosphate carboxylation–oxygenation flux

ratio (Vc/Vo) were extracted for a given light intensity and

atmospheric [CO2]. These values were then used to con-

strain the flux of the corresponding reactions in the diel

FBA model (Figure 1). The ODE and FBA modules were for-

mulated as described in the model execution section and

values were passed between them using yggdrasil, a

Python package for integrating models across languages

and scales, while coordinating their parallel execution

(Lang, 2019).

TC-ODE-FBA model design

The LC-ODE-FBA model transfers only two of the ODE-

predicted fluxes to the FBA module. An alternative

approach is to allow the ODE module to predict fluxes

through all the chloroplast metabolic reactions, and then

to use the FBA model to predict flux through the chloro-

plast reactions that were unaccounted for in the ODE

model, such as amino acid and lipid synthesis, as well as

the reactions in the other subcellular compartments. In this

TC-ODE-FBA model, the additional chloroplast ATP and

reducing power costs from the FBA model need to be

accounted within the ODE model (Figure 2).

The ODE module consisted of the soybean e-

photosynthesis model, which was modified to account

for any additional daytime chloroplast ATP and NADPH

costs observed in the FBA module. This was achieved by

introducing an additional ATP sink term (vATP ODE ) to the

equation representing the rate of change of chloroplast

ATP concentration in the ODE model:

d ATP½ �0Chl=dt ¼ d ATP½ �Chl=dt � vATP ODE (1)

Similarly, an NADPH sink term (vNADPH ODE ) was added

to the equation representing the rate of change of NADPH

in the chloroplast to account for the extra NADPH costs:

d NADPH½ �0Chl=dt ¼ d NADPH½ �Chl=dt � vNADP ODE (2)

To represent the flow of metabolites between the ODE

model and the FBA model, exchange reactions (reactions

that represent the import or export of metabolites into or

out of the model) were added for cytosolic triose-

phosphate (TP), cytosolic 3-phosphoglycerate (PGA),

cytosolic inorganic phosphate, cytosolic glycolate, and

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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cytosolic glycerate. Exchange reactions for vacuolar malate

and vacuolar citrate were also added to the FBA model to

enable it to represent organic acid accumulation and remo-

bilization fluxes. To allow the ODE model to supply ATP

and NADPH to the FBA chloroplast, reactions for chloro-

plast ATP and NADPH generation from ADP and NADP+

respectively, were added to the FBA model. To ensure that

there was no duplication of fluxes between the ODE and

FBA models, metabolic pathways already accounted for by

the ODE model were constrained to zero flux in the FBA

model. Hence, the FBA chloroplast does not have active

reactions for the photosynthetic light reactions, CO2 fixa-

tion by RuBisCo, photorespiration, or starch biosynthesis.

However, all other chloroplast reactions in the FBA model,

principally those involved in amino acid biosynthesis, were

free to carry fluxes.

The TC-ODE-FBA formulation does not use a diel FBA

model, because the ODE model only accounts for chloro-

plast metabolism in the light, i.e., when photosynthesis is

occurring. This means that the FBA model needed to be

constrained to force it to accumulate malate and remobi-

lize citrate during the day. From separate diel FBA leaf

model predictions, the following relationships between

starch accumulation and organic acid accumulation/remo-

bilization were noted (Table S1):

VMAL acc ¼ 0:71� V STARCH acc (3)

V CIT acc ¼ �0:56� V STARCH acc (4)

where VMAL_acc, VCIT_acc, and VSTARCH_acc are malate, citrate,

and starch accumulation fluxes for which positive values

suggest accumulation and negative values suggest remo-

bilization of accumulated metabolites. These equations

were used to constrain the respective fluxes in the FBA

model. A complete list of all constraints used to set-up the

daytime leaf FBA model for TC-ODE-FBA is presented in

Table S2.

To run the TC-ODE-FBA model, the initial values for

vATP ODE and vNADPH ODE were set to 0, and the steady-

state values predicted by the ODE module for chloroplast

TP and PGA export and starch accumulation rate were

recorded. In the FBA module, the exchange reactions for

TP and PGA were constrained to the values recorded in the

ODE module. Likewise, the values for the chloroplast gly-

colate efflux and glycerate influx predicted by the ODE

module were used to constrain the equivalent exchange

fluxes in the FBA model. These constraints ensured that

while the ODE module of TC-ODE-FBA was responsible for

the chloroplastic parts of the photorespiratory flux, the

remainder of the pathway (glycerate generation from gly-

colate) was left to the FBA component. The rate of starch

accumulation in the ODE model was also used to constrain

malate accumulation and citrate remobilization rates in the

vacuole of the FBA model based on equations (3) and (4),

respectively. Fluxes through reactions generating ATP and

NADPH in the FBA model were constrained based on

vATP ODE and vNADPH ODE fluxes from the ODE module.

Parsimonious FBA (pFBA) was then used to predict a flux

distribution in the FBA model that maximized the export of

sucrose and amino acids from the leaf to the phloem. A

feasible solution was guaranteed because there were no

ODE module

Ve_PSII
Vc/Vo

FBA module

All 
fluxes

PPFD [CO2]

PPFD

START

STOP

Figure 1. The loosely coupled ordinary differential equation (ODE)–flux bal-

ance analysis (FBA) model.

The e-photosynthesis ODE model and diel leaf FBA models can be com-

bined in a loosely coupled configuration model of leaf metabolism. The

ODE module is used to predict photosystem II electron flux (Ve_PSII) and the

RuBisCo-catalysed ribulose-1,5-bisphosphate carboxylation-oxygenation

ratio (Vc/Vo) for a given photon influx rate [photosynthetic photon flux den-

sity (PPFD)] and atmospheric [CO2]. The diel leaf FBA module, constrained

by the values of Ve_PSII and Vc/Vo, is used to predict the leaf metabolic net-

work fluxes under the same conditions.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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obligatory demands on the FBA model other than the non-

growth associated maintenance (NGAM), which was con-

strained as a function of light intensity (Töpfer et al., 2020),

and hence the ODE steady-state solution for the same light

intensity should fall within FBA solution space.

The fluxes through the ATP and NAD(P)H shuttles [plas-

tid nucleotide transporter (NTT) and malate dehydroge-

nase (MDH) activity respectively] to the chloroplast in the

FBA module were observed to check whether the chloro-

plast ATP and NADPH demands in the FBA model were

met by the ODE model. As flux variability analysis revealed

that ATP shuttling via NTT and PEP-pyruvate shuttle

contributed equally to the optimization problem, the flux

weighting on the NTT reaction was changed from 1 to 0.5

during the minimization of sum of fluxes stage of pFBA to

ensure that all the ATP was shuttled via the NTT reaction

during pFBA. From the pFBA run, the net ATP demand of

the chloroplast, vATP FBA (equivalent to ATP available from

vATP ODE and NTT) and the net NADPH demand of the

chloroplast, vNADPH FBA (equivalent to NADPH available

from vNADPH ODE and MDH) were recorded. If the shuttles

were found to be actively importing ATP or NAD(P)H into

the FBA chloroplasts, then the values of vATP ODE and

vNADPH ODE were updated to vATP FBA and vNADPH FBA,

ODE module

Vt_triosephosphate
Vt_Glycolate
Vt_Glycerate
Vstarch_synthesis

FBA moduleAll other fluxes

photosynthe�c,
photorespiratory 

and starch synthesis 
fluxes

PPFD [CO2]

Is
VATP_FBA = VATP_ODE 

and 
VNADPH_FBA = VNADPH_ODF

?

no

yes

START

STOP

VATP_ODE = 0
VNADPH_ODE = 0 VATP_ODE = VATP_FBA 

VNADPH_ODE = VNADPH_FBA 

Day-�me 
leaf 

fluxes

photosynthe�c,
photorespiratory and 
starch synthesis fluxes

All other fluxes

Figure 2. The tightly coupled ordinary differential equation (ODE)–flux balance analysis (FBA) model.

In the tightly coupled configuration, the ODE module is used to model photosynthetic, photorespiratory, and starch synthesis fluxes for a given light intensity

[photosynthetic photon flux density (PPFD)] and atmospheric [CO2]. The chloroplast triose-phosphate efflux (Vt_triosephosphate), glycolate efflux (Vt_glycolate), glyce-

rate influx (Vt_glycerate), and starch accumulation rate (Vstarch_synthesis) predicted from the ODE module were used as inputs and constraints on the FBA module.

VATP_ODE and VNADPH_ODE represent energy sink fluxes accounting for the additional ATP and NADPH costs arising from plastid metabolism beyond the ODE

module. VATP_FBA and VNADPH_FBA represents the net ATP and NADPH demand of the plastid in the FBA module. ODE and FBA models were run in a loop until

all plastidic ATP and NAD(P)H demands in the FBA model were met by the ODE model.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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respectively, to account for the ATP and NADPH shuttled;

and the ODE and FBA modules were run again. Only when

the net ATP and NADPH demand in the FBA chloroplast

were found to be met by the ODE model (i.e. vATP FBA ~=

vATP ODE and vNADPH FBA ~= vNADPH ODE , a difference

<0.005 was considered negligible), were the ODE and FBA

(representing daytime metabolism) models deemed to

have reached a consensus. The loop was then broken and

fluxes for daytime metabolism from both modules were

recorded.

Night-time leaf metabolism in the TC-ODE-FBA set-up

was modelled using another copy of the soy-specific PLANT-

COREMETABOLISM FBA model. This model was set up by set-

ting photon uptake to zero and constraining starch

degradation, malate remobilization, and citrate accumula-

tion rates based on total starch accumulated during the

photoperiod, such that at dawn all the accumulated starch

was depleted. A complete list of all constraints used to set-

up the night-time leaf FBA model for TC-ODE-FBA is pre-

sented in Table S3. Again, pFBA was used to model fluxes

maximizing the night-time export of sucrose and amino

acids from the leaf to the phloem. As with the LC-ODE-FBA

model, ODE and FBA modules were formulated as

described in the model execution section and integrated

for the TC model using the yggdrasil framework (Lang,

2019).

Coupled-ODE-FBA models make accurate predictions of

the effect of light intensity and atmospheric [CO2] on

photosynthetic assimilation rate

The e-photosynthesis ODE model accurately accounts for

the effect of atmospheric [CO2] and light intensity, with the

model-predicted rate of photosynthetic carbon assimilation

closely matching experimentally measured values (Figure

3a,b). In contrast, the FBA model fails to reflect changes in

atmospheric [CO2] and light intensity: the predicted photo-

synthetic assimilation rate is insensitive to [CO2] (Figure

3a) and the model predicts a linear response to light inten-

sity (Figure 3b). Figure 3 also shows that the ODE, LC-ODE-

FBA, and TC-ODE-FBA models predicted very similar A

values to each other across a range of light intensities and

atmospheric [CO2] with the coupled models predicting A

values slightly lower than the ODE model, although still

close to experimental values. Because the PSII electron

flux is constrained to the corresponding flux in the ODE

model, both ODE and LC-ODE-FBA models carry the same

flux through their respective photosynthetic linear electron

flow (LEF) pathways, generating the same amount of

reducing power for a given light intensity. The LC-ODE-

FBA model, however, has additional reducing power

demands when compared with the ODE model (mainte-

nance and photorespiratory N-refixation), so it predicts

lower A values. The TC-ODE-FBA model also predicts

slightly lower A values compared with the ODE model

because of the higher ATP and reducing power demand

due to accounting for maintenance, photorespiratory N-

refixation, and sucrose biosynthesis (see Data S1, S2).

Maintenance costs (defined in the FBA component) were

observed to decrease TC-ODE-FBA assimilation rate by

11% in saturating light (HL) conditions. Predicted A values

from both coupled models fell within the range of A

values reported in previously published experiments (Fig-

ure 3a,b).

While both coupled models predicted very similar A

values, there is a major difference in the energetic flexibil-

ity of the two models. In the LC-ODE-FBA model, LEF (han-

dled by the FBA module) is limited by the PSII electron flux

predicted by the ODE module, but the model is free to run

unconstrained cyclic electron flow (CEF) to generate addi-

tional ATP to meet its energy demands (as is evident from

(a) (b)

Figure 3. Predicted and experimental dependence of gross leaf CO2 assimilation on intercellular CO2 [Ci] and incident light flux [photosynthetic photon flux den-

sity (PPFD)].

(a) Predicted and experimental A-Ci curves from the flux balance analysis (FBA) and ordinary differential equation (ODE) models alone and the loosely (LC) and

tightly coupled (TC) ODE-FBA models. Light intensity was 1200 µmolm–2 sec–1. Triangle and circle symbols show A-Ci field data measured at saturated light

intensity from Morgan et al. (2004) and Sun et al. (2014), respectively.

(b) Predicted A-PPFD curves from the FBA, ODE, LC, and TC ODE-FBA models. Atmospheric [CO2] was 400 ppm. Circle, triangle and square symbols represent

measurements at ambient CO2 from Haile and Higley (2003), Yao et al. (2017), and Zhang et al. (2011), respectively.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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the ‘Ferredoxin_Plastoquinone_Reductase_p1’ flux in Data

S3). In contrast, in the TC-ODE-FBA model the relative rates

of LEF and CEF are dictated by the kinetic parameters of

the relevant photosynthetic electron transport chain com-

plexes and this results in a more limited ATP supply from

photons. Hence, the TC-ODE-FBA model predicted utiliza-

tion of the TCA cycle and mitochondrial ATP synthesis to

meet the remainder of its ATP demand. For example, when

modelling metabolism in leaves grown in a 1000 µmolm–2

sec–1 light intensity and 400 ppm [CO2], the LC-ODE-FBA

model gave a CEF/LEF ratio of 0.45 compared with a value

of 0.33 in the TC-ODE-FBA model. On the other hand, the

LC-ODE-FBA model did not predict any mitochondrial ATP

synthesis compared with a value of 7.24 µmol ATP m–2 sec–

1 in the TC-ODE-FBA model. The LC-ODE-FBA and TC-ODE-

FBA models also showed a significant difference regarding

run-times. While the LC-ODE-FBA model only needed to

run its ODE and FBA components once, the TC-ODE-FBA

model needs to run until both its ODE and FBA compo-

nents achieved convergence, which was noted to happen

within four to 10 cycles, resulting in the TC-ODE-FBA

model taking four to 10 times longer to run than the LC-

ODE-FBA model (Figure S1). A summary of the different

capabilities of the ODE, FBA, LC-ODE-FBA, and TC-ODE-

FBA models is presented in Table S4.

Comparing predicted rates of photosynthesis and starch

synthesis with measured data

The predictive accuracy of the coupled ODE-FBA models

was assessed by comparing the predicted rates of CO2

assimilation, PSII electron transport flux, and starch accu-

mulation in the FBA, ODE, LC-ODE-FBA, and TC-ODE-FBA

models with experimental data from soybean grown in

free air CO2 enrichment (FACE) experiments (Rogers et al.,

2004). The predicted fluxes from each model are listed in

Data S1–S4. The FBA model substantially overestimated A,

while the ODE model, LC-ODE-FBA, and TC-ODE-FBA

models predicted accurate values for A at two different

atmospheric CO2 concentrations (no statistically significant

difference from the experimentally measured data) (Figure

4a). Similarly, all the models except the FBA model, accu-

rately predicted JPSII in both ambient and elevated [CO2]

(Figure 4b). Elevated [CO2] resulted in a higher JPSII than

ambient [CO2], but the proportional increase was much

less than for A (Figure 4b). Turning to daytime starch accu-

mulation, both the FBA and LC-ODE-FBA models predict

lower leaf starch levels at noon compared with the ODE

and TC-ODE-FBA models (Figure 4c). However, all predic-

tions were not significantly different from the estimates

based on experimental data.

(a) (b) (c)

Figure 4. Statistical comparison of model-predicted fluxes with experimentally determined values.

(a) Net CO2 assimilation flux and (b) the rates of photosystem II (PSII) electron transport (JPSII) predicted by the flux balance analysis (FBA), ordinary differential

equation (ODE), tightly coupled (TC)-ODE-FBA and loosely coupled (LC)-ODE-FBA models at noon (6th hour of the photoperiod) on days 164, 176, 191, 205, and

215 of the free air CO2 enrichment experiment were compared with experimentally measured values reported in Rogers et al. (2004). Measured JPSII from Rogers

et al. (2004) was divided by 2 to correct the PSII electron transport rate.

(c) Leaf starch levels at noon on days 191, 205, and 215 were estimated from hourly starch accumulation rates predicted by the models and was compared with

experimentally determined values from Rogers et al. (2004). For each simulation, only [CO2] and light intensity were changed according to the measured values.

Box plot whiskers represent the extremes in the data. Paired Student’s t-tests were performed to determine if the means of each model simulation set and the

measured values were significantly different from each other. *P < 0.001.
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The improved prediction accuracy for starch accumula-

tion by the TC-ODE-FBA model can be attributed to the fact

that it utilizes the ODE module to predict starch accumula-

tion rates by accounting for the kinetics of photoassimilate

partitioning. The LC-ODE-FBA model, on the other hand,

relies on the FBA component to predict the starch accumu-

lation rate, which is significantly influenced by model

parameters such as maintenance costs and the day/night

phloem export rate ratio. However, these parameters were

not based on soy data and so the predicted starch accumu-

lation rate is less likely to be accurate.

A parameter sensitivity analysis was undertaken to test

the robustness of the predictive accuracy of the TC-ODE-

FBA model to the various parameter choices and assump-

tions contained within the model (Information S1, Table

S5). Key assumptions and parameters in the FBA module,

such as the maintenance cost, the constraint on the ratio

of starch to carboxylic acid accumulation, and the con-

straint on phloem metabolite composition, had negligible

effects on the accuracy with which the TC-ODE-FBA model

predicted A and starch accumulation at both ambient and

elevated [CO2]. In contrast, varying 14 of the 309 kinetic

parameters by �50% was noted to impact the TC-ODE-FBA

model CO2 assimilation rate predictions (and hence the

ability of the model to predict leaf starch content as well).

An additional two kinetic parameters were observed to

influence starch accumulation rate predictions significantly

(Table S5). While overall, this demonstrates that the model

is robust to small variations in the parameters used, it also

highlights, sensitivity to a small number of the kinetic

parameters. Future work could look to determining more

accurate values for these specific parameters and checking

that they do not change in soybean plants grown under

different environments.

TC-ODE-FBA model predicts a higher night-time

respiration rate in soybean grown under elevated [CO2]

The TC-ODE-FBA model can be used to model night-time

leaf metabolism using the outputs from the daytime model

and a single-phase nocturnal FBA module. The FBA mod-

ule predicted that the oxidative pentose phosphate path-

way (PPP) and pyruvate dehydrogenase (PDH) were

responsible for a significant fraction of night-time CO2 evo-

lution, with only a small fraction of total CO2 evolved origi-

nating from the TCA cycle. This was found to be a

consequence of the organic acid accumulation/remobiliza-

tion constraints in the model (equations 3 and 4). Malate

remobilized from the vacuole was oxidized to oxaloacetate

via malate dehydrogenase, contributing to a significant

fraction of the TCA flux. A small fraction of this malate was

also used to generate pyruvate via malic enzyme. A signifi-

cant fraction of the citrate generated in the TCA cycle was

observed to accumulate in the vacuole to comply with the

citrate accumulation constraints. Because of this, a

considerably smaller flux was observed in the remainder

of the TCA cycle (citrate to malate).

The TC-ODE-FBA model was used to predict the effect of

the atmospheric [CO2] on respiratory CO2 production in

soybean leaves, using parameters from a soybean FACE

experiment. The TC-ODE-FBA model predicted a higher

respiration rate under elevated CO2 (Figure 5) consistent

with what has been observed experimentally (Rogers et al.,

2004). A parameter sensitivity analysis (Information S1,

Table S5) showed that in all cases where a model solution

was achieved, a higher respiration rate was observed

under elevated CO2 if the same parameter value was used

at both CO2 levels. Table 1 lists fluxes through all the meta-

bolic processes involved in the production and consump-

tion of CO2 in leaves at night on day 164 of the FACE

experiment as modelled by the TC model. Here we see a

higher PDH and malic enzyme flux in elevated [CO2] com-

pared with the ambient conditions. The model proposes

this because of the increased availability of vacuolar

malate in elevated [CO2] (a consequence of equation 3 and

increased daytime starch accumulation rate predicted by

the ODE module; Figure 4c). With increased reducing

power being generated by PDH and malic enzyme, oxida-

tive PPP flux was observed to drop in elevated [CO2] condi-

tions. There was also a predicted decrease in the TCA cycle

flux from citrate to malate. The latter also reflected the

increased citrate accumulation flux (a consequence of

Figure 5. The tightly coupled ordinary differential equation (ODE)–flux bal-

ance analysis (FBA) model predicts a higher night-time respiration rate in

elevated [CO2].

The tightly coupled ODE-FBA model was used to model night-time metabo-

lism under ambient and high [CO2] free air CO2 enrichment conditions (days

164, 176, 191, 205, and 215) and flux representing net CO2 expelled from the

model (CO2_tx) was extracted from the predicted flux distribution.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2022), 109, 295–313
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equation 4 and increased daytime starch accumulation rate

predicted by the ODE module; Figure 4c). Overall, a higher

respiration rate at elevated CO2 was observed through

increased night-time leaf metabolic activity, which was a

consequence of the higher transitory starch store predicted

by the ODE component of the hybrid model in elevated

CO2 conditions.

Metabolism under different light intensity and [CO2]

conditions

The TC-ODE-FBA model was used to model the effect of

light intensity on daytime metabolism in ambient [CO2]

under low light (LL), medium light (ML), and HL conditions

(300, 600, and 1000 µmol photons m–2 sec–1, respectively).

Major fluxes (those above a threshold of 0.3 µmolm–2 sec–1)

predicted at LL, ML, and HL are depicted in Figure 6a–c,
respectively. Among the many differences, the dissipation

of excess light energy, which was primarily via non-

photochemical quenching (NPQ), and the fluxes associated

with starch accumulation were found to increase with

increasing light intensity. The model also predicted

sucrose export rates of 0.72, 1.11, and 0.95 µmolm–2 sec–1

for the LL, ML, and HL conditions, respectively. This pat-

tern was the result of an increased allocation of C towards

starch in HL (22% and 39.3% of net assimilated C in ML

and HL respectively). The model also predicted a RuBisCo

Vc/Vo ratio of 2.96 for all three light conditions, and hence

photorespiration and the associated N-refixation fluxes

were observed to follow the CO2 assimilation rate pattern

observed in Figure 3b. As NGAM in the model is a function

of the incident light intensity, a higher mitochondrial ATP

synthase flux (generating ATP to meet NGAM demand)

was observed at higher light intensities.

The TC-ODE-FBA model was also used to study the

effect of elevated [CO2] on leaf metabolism by modelling

metabolism in 800 ppm [CO2] and 1000 µmol photon m–

2sec–1 light intensity (high light, elevated CO2 [HL-E]; Fig-

ure 6d). Compared with HL, HL-E showed decreased photo-

respiration and an increased Calvin cycle flux resulting in

higher chloroplastic ATP and NADPH consumption. As a

result, more of the incident light was used for photochem-

istry to meet this higher energy demand and a lower NPQ

was predicted. The reduced photorespiratory rate at ele-

vated CO2 also resulted in a reduced ammonia reassimila-

tion flux and the associated energy demand. The HL-E

model also predicted a higher starch accumulation rate in

agreement with experimental observations (discussed ear-

lier), and as daytime vacuolar malate accumulation and cit-

rate remobilization fluxes in the model were constrained to

the starch accumulation rate, the HL-E prediction showed

an increased contribution of night-time citrate to the TCA

cycle, permitting the model to divert more phosphoenol-

pyruvate towards malate biosynthesis via anaplerotic C fix-

ation. This reduced the predicted flux through PDH in HL-E

compared with HL. The complete set of flux predictions for

LL, ML, HL, and HL-E conditions is provided in Data S5.

Metabolism in mature and growing leaves

The predictive power of the TC-ODE-FBA model was

explored further by comparing the metabolism of fully

expanded mature leaves and growing leaves grown at

1000 µmolm–2 sec–1 photosynthetic photon flux density

(PPFD) and 400 ppm CO2. A complete list of the predicted

reaction and transport fluxes in mature and growing leaves

is given in Data S6. In total, fluxes were predicted for 728

metabolic reactions and transport steps in mature leaves

and 837 in growing leaves. A simplified representation of

the major fluxes in mature and growing leaves during the

day and night is shown in Figure 7. A comparison between

the predicted flux distributions for the two leaf types

shows that the dominant daytime fluxes were photosyn-

thetic electron transport and ATP synthesis, and the Calvin

cycle and photorespiration. These fluxes were essentially

identical in the two leaf types, as would be expected given

that these photosynthetic fluxes are primarily determined

by the invariant light flux and atmospheric CO2 concentra-

tion. Other fluxes in the wider metabolic network also

showed some similarities, most notably a non-cyclic TCA

flux, which is consistent with 13C labelling results (Xu et

al., 2021).

However, there were also notable differences in the pre-

dicted flux distributions between the two leaf types. Mature

leaves used assimilated carbon to export sugars and amino

acids to the phloem while growing leaves used assimilated

carbon to meet the requirement for synthesis of new bio-

mass components (Figure 7). As a result, during the day,

there were higher rates of N uptake, amino acid biosynthe-

sis and anaplerotic C-fixation in the growing leaf model to

meet the protein demand for growth. The growing leaf

model also predicted higher rates of mitochondrial ATP

synthesis, primarily to support additional protein synthesis

(Figure 7a,b). This is also evident from the ATP budgets cal-

culated from the predicted flux distributions in the mature

and growing leaf models (Table 2). In the growing leaf

Table 1 Night-time CO2 producing and consuming processes in
leaves modelled under day 164 free air CO2 enrichment conditions

Metabolic process
CO2 flux (µmolm–2 sec–1)

[CO2] = 372 ppm [CO2] = 552 ppm

Pentose phosphate pathway 1.28 1.10
Pyruvate dehydrogenase 1.09 1.54
TCA cycle 0.27 0.05
Malic enzyme 0.22 0.33
Allantoin degradation 0.03 0.06
Amino acid biosynthesis 0.02 0.04
CO2 respiration –2.91 3.12

TCA, tricarboxylic acid.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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Figure 6. Tightly coupled (TC) ordinary differential equation (ODE)–flux balance analysis (FBA) model can be used to predict metabolic network fluxes under dif-

ferent light intensities and [CO2] conditions.

The TC-ODE-FBA model was set up for (a) low light (300 µmol photons m–2 sec–1, 400 ppm [CO2]), (b) medium light (600 µmol photons m–2 sec–1, 400 ppm [CO2]),

(c) saturating light (1000 µmol photons m–2 sec–1, 400 ppm [CO2]) and (d) saturating light under elevated [CO2] (1000 µmol photons m–2 sec–1, 800 ppm [CO2]) condi-

tions. In the TC configuration, the ODE model predicts chloroplast metabolism (fluxes in blue) and provides precursors for the FBA model to model fluxes in other

compartments and chloroplast metabolic pathways outside the scope of the ODE model (fluxes in red). For clarity only fluxes above a threshold of 0.3 µmolm–2

sec–1 are depicted. Arrow thicknesses are proportional to flux values. 3PG, 3-phosphoglycerate; CIT, citrate; GLN, glutamine; GLT, glutamate; MAL, malate; NGAM,

non-growth associated maintenance; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; TP, glyceraldehyde 3-phosphate; αKG, 2-oxoglutarate.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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Figure 7. Tightly coupled (TC) ordinary differential equation (ODE)–flux balance analysis (FBA) model can be used to predict metabolic network fluxes in mature

and growing leaves in the light and the dark.

The TC-ODE-FBA model was used to model mature and growing leaves under 1000 µmolm–2 sec–1 photosynthetic photon flux density and 400 ppm [CO2]. In the

TC configuration, the ODE model predicts chloroplast metabolism (fluxes in blue) and provides precursors for the FBA model to model fluxes in other compart-

ments and chloroplast metabolic pathways outside the scope of the ODE model (fluxes in red). The FBA model was configured to model mature leaves export-

ing sucrose to the phloem during the day (a) and night (c) or growing leaves synthesizing and accumulating biomass during the day (b) and night (d). For clarity

only fluxes above a threshold of 0.3 µmolm–2 sec–1 are depicted. Arrow thicknesses are proportional to flux values. 3PG, 3-phosphoglycerate; ASP, aspartate;

CIT, citrate; G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; GLC, glucose; GLN, glutamine; GLT, glutamate; GLY, glycine; GLYOX, glyoxylate; LYS, lysine;

MAL, malate; NGAM, non-growth associated maintenance; OAA, oxaloacetate; PEP, phosphoenolpyruvate; Pi, inorganic phosphate; PYR, pyruvate; SER, serine;

TP, glyceraldehyde 3-phosphate; αKG, 2-oxoglutarate.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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model, fluxes were also observed in reactions associated

with the biosynthesis of cellulose, xylan, phosphatidate,

palmitoyl acyl carrier protein (ACP), palmitoleoyl ACP,

stearoyl ACP, oleoyl ACP, octadecadienoyl ACP, arachidoyl

ACP, eicosenoyld ACP, and behenoyl ACP. These fluxes

were relatively small and are not depicted in Figure 7b.

Differences between the two leaf types were also appar-

ent in the predicted flux distributions for nocturnal metab-

olism (Figure 7c,d). The mature leaf model used carbon

and energy generated from starch degradation to generate

sucrose and amino acids while the growing leaf model

used the same to generate protein, lipids, and cell wall

(fluxes representing lipid metabolism, cell wall biosynthe-

sis, and parts of the TCA cycle are not depicted in Figure

7c,d as these fluxes were relatively very small). The grow-

ing leaf model also showed higher nocturnal N uptake,

amino acid biosynthesis, and anaplerotic C-fixation similar

to daytime metabolism. In the case of the growing leaf

model, higher nocturnal fluxes were also apparent in gly-

colysis, the TCA cycle and the mitochondrial electron

transport chain (Figure 7d) to support the energy demand

involved in the synthesis of biomass components.

DISCUSSION

Tight coupling provides a better hybrid ODE-FBA model

The LC-ODE-FBA configuration is the simplest way to

integrate ODE and FBA leaf models and it is similar to

the individual FBA runs in previous dFBA models

(Grafahrend-Belau et al., 2013; Shaw and Cheung, 2018). In

this set-up both model elements need to be run only once

and hence computation is fast and can be run independently

on different platforms with only minimal information being

passed from the ODE model to the FBA model. In addition,

the FBA component of the LC-ODE-FBA configuration is a

diel leaf FBA model and hence this configuration inherits all

the advantages of diel leaf FBA models, such as the ability

to predict day/night amino acid and organic acid accumula-

tion rates (Cheung et al., 2014). While it has its advantages,

the LC-ODE-FBA model also has a major limitation. Kinetic

equations based on metabolite and enzyme concentration

and reaction kinetics determine the fate of photoassimilates

in the ODE model. This part of the ODE model is ignored in

the LC-ODE-FBA model, and so while the assimilation rate

was predicted accurately, photoassimilate partitioning pre-

diction was inaccurate (Figure 4).

In contrast, the TC-ODE-FBA model accurately predicted

both assimilation rate and photoassimilate partitioning. It

achieves this by using the ODE model to predict chloro-

plastic fluxes and then using the FBA model to predict

fluxes outside the scope of the ODE model, while allowing

the FBA model to relay its chloroplastic energy demand

back to the ODE model via the vATP FBA and vNADPH FBA

fluxes. These fluxes are fed into the ODE model as steady-

state ATP and NADPH sinks, respectively, as they represent

the demands of the steady-state FBA model. Under all sce-

narios modelled here, the ODE model was able to accom-

modate the constant vATP FBA and vNADPH FBA sinks.

However, very large vATP FBA and vNADPH FBA sink fluxes

could potentially prevent the ODE model from achieving a

feasible solution (by quickly bringing the NADPH or ATP

concentration below zero). The likelihood of this was

observed to be higher in energy-limited scenarios such as

extremely LL and LL at elevated [CO2]. One possible work-

around for this issue is to gradually increase the vATP FBA

and vNADPH FBA sink fluxes from 0 to its actual value once

the model has been able to achieve a temporary steady

state. It should be noted that under extreme energy-limited

conditions, the e-photosynthesis model is unable to

achieve steady state even in isolation (equivalent to

vATP FBA and vNADPH FBA fluxes set to 0). More work on the

ODE model is required to overcome this issue. Neverthe-

less, with this configuration, the TC-ODE-FBA model was

able to model leaf metabolism for all conditions discussed

in this study, and the results show that the ODE and FBA

components complemented each other, thus overcoming

many of their individual limitations.

Although both modules needed to be run multiple times

in a loop on the same platform, the TC-ODE-FBA model

offers a much higher predictive power compared with the

LC-ODE-FBA model. In addition, parameter sensitivity anal-

ysis showed that the principal predictions (i.e. higher

assimilation, starch accumulation, and night-time

Table 2 ATP production and consumption in the tightly coupled
ODE-FBA model during the day

Metabolic process
ATP flux (µmolm–2 sec–1)

Mature Growing

Chloroplast ATP synthesis 116.50 116.61
Mitochondrial ATP synthesis 7.24 17.91
Glycolysis 1.19 7.28
Succinyl CoA synthase 1.12 1.22
Structural carbohydrate 0.00 –0.13
Amino acid biosynthesis –0.04 –1.32
Sucrose synthesis –1.04 0.00
Starch biosynthesis –1.33 –1.33
Photorespiration –4.67 –4.67
GS-GOGAT –4.83 –8.51
Maintenance –7.69 –7.69
Protein biosynthesis 0 –12.86
Calvin–Benson cycle –106.42 –106.43

FBA, flux balance analysis; ODE, ordinary differential equation.
Leaf metabolic fluxes for PPFD = 1000 µmolm–2 sec–1 and [CO2]
=400 ppm were predicted by the tightly coupled ODE-FBA model.
Reaction fluxes involving the consumption and production of ATP
from both model components, represented by negative and posi-
tive ATP flux values respectively, were used to tabulate ATP con-
sumption and production.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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respiration rates at higher [CO2]) held true for �50% varia-

tion in any modelling parameter, as long as a steady state

was achievable. It should, however, be noted that the

parameter values were assumed to be the same in both

ambient and elevated CO2 conditions here, which may be

the case for many kinetic parameters, but non-kinetic

parameters such as NGAM costs and organic acid, starch

accumulation/remobilization rate ratios are likely to be dif-

ferent under different environmental conditions.

Another significant advantage of TC-ODE-FBA over LC-

ODE-FBA is its ability to predict the dissipation of excess

light energy. The TC-ODE-FBA analysis of LL, ML, and HL

conditions showed energy dissipation increasing with light

intensity (Figure 6a–c) (Nicol et al., 2019; Rahimzadeh-

Bajgiran et al., 2017). The model also predicted a decrease

in NPQ in leaves under HL when atmospheric [CO2]

increased (Figure 6c,d), which has also been previously

established in tobacco (Dahal and Vanlerberghe,2018;

Miyake et al., 2005). While the model can make many qual-

itative predictions about the dissipation of excess energy,

it still has limitations. As alternative oxidase falls under the

FBA component, its contribution to the dissipation of

excess energy is not considered in the current TC-ODE-

FBA set up. As a result, the model is unable to explore the

role of alternative oxidase in the light-stress response

(Dahal and Vanlerberghe, 2018). It should be noted that a

detailed quantitative assessment of the TC-ODE-FBA model

predictions was not possible because of the lack of

soybean-specific data. Comparison of the predicted steady-

state metabolite concentrations and organic acid stores

against experimental data could help identify additional

strengths and weaknesses in the model.

While both models have their advantages and disadvan-

tages, it should be noted that in both LC-ODE-FBA and TC-

ODE-FBA set-ups, as the FBA and ODE modules were run

separately, the linear and non-linear components of the

final models are solved separately. As a result, these

models can be solved considerably faster than fully inte-

grated hybrid models, such as the one described by Pozo

et al. (2015), where the linear and non-linear components

have to be solved together as a single non-linear problem.

As such the couplings facilitated by integration tools such

as yggdrasil provide a significant improvement over previ-

ously published models of leaf metabolism.

TC-ODE-FBA model provides a comprehensive description

of leaf metabolism

Nocturnal respiration has a significant bearing on the

overall change to crop productivity and contradictory data

about respiratory responses to high [CO2] has been

reported (Davey et al., 2004; Drake et al., 1999). Both ODE

and FBA models on their own are unable to explore such

respiratory responses. However, the TC-ODE-FBA model is

capable of modelling night-time metabolism under

different atmospheric [CO2] and the interaction of night-

time respiration with changes in daytime photosynthesis

and non-structural carbohydrate levels. The TC-ODE-FBA

successfully predicted the increased transitory starch stor-

age and higher night-time respiration with growth under

elevated [CO2]. It provides a theoretical underpinning to

the controversial observation of increased, rather than

decreased, night-time respiration observed in plants

grown under elevated [CO2] of Davey et al., (2004). The

predicted increase in transitory starch stores in leaves

grown in elevated CO2 also agrees with previous experi-

mental observations (Ainsworth et al., 2007; Grimmer et

al., 1999; Rogers et al., 2004). As the FBA model repre-

senting night-time metabolism then remobilizes all the

transitory starch a higher respiration rate is observed (Fig-

ure 6). While this increased rate of night-time respiration

is in agreement with published data (Davey et al., 2004), it

should be noted that the assumption that all of the transi-

tory starch is remobilized may not always be the case.

Grimmer et al. (1999) reported that castor bean leaves

grown in elevated [CO2] only partially use up the available

starch pool. However, data from soy grown using FACE

suggests that the leaves are able to use the entire starch

pool (Rogers et al., 2004) thus supporting the assumption

in the FBA model. Closer inspection of the nocturnal

fluxes involving CO2 in mature leaves showed that while

the oxidative PPP and PDH are responsible for most of

the CO2 respired, the contributions from the TCA cycle,

malic enzyme, and amino acid biosynthesis were also sig-

nificant (Table 1).

One of the key features of the TC-ODE-FBA model is its

ability to use fluxes from the ODE model to predict fluxes

through several hundred reactions with relatively little

experimental data. Soy-specific gas exchange data were

used to parameterize the ODE component. The FBA com-

ponent of the model required petiole phloem composition

(when modelling mature leaves) and leaf biomass compo-

sition (when modelling growing leaves). Soy-specific peti-

ole phloem composition data were not available and hence

data from tomatoes available from the literature were used

instead (Table S6). Although a quite different species, sen-

sitivity analysis showed that varying phloem composition

had negligible impact on the quantitative results discussed

in this study (Table S5). Soy leaf biomass composition

required to model growing soy leaves was experimentally

determined (Table S7).

To highlight the utility of the model, we also used the

TC-ODE-FBA model to compare metabolic fluxes in fully

expanded mature leaves and growing leaves. While Figure

7 was used to highlight the differences between the two

different modelling scenarios, many differences could not

be depicted in Figure 7 owing to these pathways carrying

very small fluxes. An example of this is lipid biosynthesis.

The TC-ODE-FBA model predicted growing leaves to

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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synthesize phosphatidate at a rate of 2.47 × 10–18 µmolm–2

sec–1 during the day (Data S6). In other cases, similarities

existed between the two scenarios that were not depicted

in Figure 7, such as when pathways in the TC-ODE-FBA

model did not carry any flux. An example of one such a

pathway is fatty acid degradation. While fatty acid turnover

is likely active in both mature and growing leaves, FBA is

incapable of capturing this and hence does not predict

fluxes through these pathways. This is also the reason why

the mature leaf flux distribution did not predict any lipid

biosynthesis. Analysis also showed that the TC-ODE-FBA

model predicted a non-cyclic TCA flux in both mature and

growing leaves. In both systems, mitochondrial MDH oper-

ated in the reverse direction to the conventional TCA cycle,

generating malate, which is in agreement with stable iso-

tope labelling studies (Ma et al., 2014; Tcherkez et al.,

2009; Xu et al., 2021). This is because photorespiratory flux

generates a significant amount of NADH in the mitochon-

dria, which has to be shuttled out into the cytosol via the

malate valve (Shameer et al., 2019).

Among the many differences between the two metabolic

systems, a significantly higher PEPC activity was predicted

in growing leaves. PEPC activity results in the generation

of oxaloacetate, which can be either reduced to malate,

transaminated to aspartate or converted to citrate and then

2-oxoglutarate via the TCA cycle. Growing leaves have a

higher protein demand compared with mature leaves and

as a result they exhibit increased allantoin uptake and

amino acid biosynthesis (Figure 7). An increased rate of

amino acid biosynthesis would generate higher oxaloace-

tate demands in the system. Anaplerotic C fixation can

generate oxaloacetate required for aspartate biosynthesis

and this association between PEPC activity and aspartate

levels has been previously discussed (Tcherkez and

Hodges, 2008). In addition, aspartate is also the precursor

for lysine, isoleucine, and methionine and so the TC-ODE-

FBA model predicted increased anaplerotic C fixation in

growing leaves. While there is no direct evidence to sup-

port this, evidence for positive correlation between N

uptake rate and PEPC activity has been reported (Scheible

et al., 1997). Besides increased oxaloacetate demands, an

increased rate of amino acid biosynthesis would result in

increased 2-oxoglutarate demands. Isotopic labelling (13C)

studies in leaves have shown that the majority of daytime

2-oxoglutarate is generated from metabolites accumulated

during the previous night (Gauthier et al., 2010). While 2-

oxoglutarate can be generated from citrate stores, it has

been shown that this citrate alone is insufficient to meet

the leaf’s 2-oxoglutarate demands (Tcherkez et al., 2017).

Vacuolar aspartate (accumulated during the previous

night) has also been proposed as a potential precursor of

2-oxoglutarate and glutamate (Gauthier et al., 2010). How-

ever, this also points towards a higher night-time PEPC

flux under higher daytime amino acid demand, as the TC-

ODE-FBA model (in its current state) was constrained not

to accumulate amino acids during the day. Enabling the

TC-ODE-FBA model to accumulate additional metabolites

in the vacuole such as sugars and amino acids would

potentially improve the ability of this model to capture

such complex flux distributions, although with the trade-

off of a greater solution space and the potential for non-

realistic flux cycling between day and night.

Future development of hybrid ODE-FBA models

There are many challenges involved in developing hybrid

ODE-FBA models (Marshall-Colon et al., 2017). While chal-

lenges such as identifying connection points or adjusting

for the difference in time scales between models are case-

specific, technical challenges such as the difficulty of cou-

pling models running on different platforms and transfer-

ring information between models can now be generalized

and solved efficiently using cross-platform model integra-

tion frameworks such as yggdrasil (Lang, 2019). While

model run-time issues are partly case-specific, the choice

for integration framework or platform could help speed up

model runs. Yggdrasil uses a Python-based environment

to execute the individual models, even those native to

other platforms, and passes information between them.

The availability of fast ODE solvers in MATLAB makes it a

good choice to run ODE models. Yggdrasil runs such

models, such as the e-photosynthesis ODE model, by

launching the MATLAB engine via Python. This process is

somewhat time-consuming and was noted to slow down

both LC and TC models by 10–20%. Nevertheless, yggdrasil

simplifies the process of developing tailored hybrid

models, so much so that there is now a strong incentive to

enhance FBA models with relevant ODE models and vice-

versa.

This study shows how metabolic modelling of C3 leaves

is improved by coupling ODE and FBA models. Similar

advantages of coupling ODE and FBA models are yet to be

explored in other plant metabolic systems. As in the case

of C3 photosynthesis described here, kinetic models of C4

photosynthesis also lack representations for many path-

ways in primary metabolism (Wang et al., 2014). Coupling

such models to FBA models of C4 leaves (Bogart and

Myers, 2016; de Oliveira Dal’Molin et al., 2010) should lead

to an improved representation of C4 metabolism. Storage

organs provide another example of a metabolic system,

which could be better described by tailored hybrid models

such as the one described here. FBA models are unable to

predict fluxes through futile cycles, an important contribu-

tor to metabolic regulation (Claeyssen et al., 2013). ODE

models have been shown to be capable of predicting the

futile cycling of sucrose in sugarcane (Rohwer and Botha

2001; Uys et al 2007). Further ODE-FBA coupling hence has

the potential to help the FBA model improve the quality of

its predictions by accounting for futile cycles, all the while

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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modelling fluxes through metabolic pathways outside the

scope of the ODE models. While ODE-based photosynthe-

sis models and diel FBA leaf models have helped improve

our understanding of leaf metabolism and have contrib-

uted to the development of ideas for metabolic manipula-

tions (Cheung et al., 2014; Shameer et al., 2018; Wang

et al., 2014; Zhu et al., 2007,), the higher predictive power

and metabolic coverage of the TC model has the potential

to improve further upon these ideas and additional appli-

cations as illustrated here.

EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

Mature leaf tissue samples from soybean plants (Glycine max cv.
P29A85L) grown at the SoyFACE facility on the South Farms of the
University of Illinois, Champaign, IL, USA (www.igb.illinois.edu/
soyface/, 40°020N, 88°140W) were collected on 9 August 2019. Sam-
ples were collected from plants grown in four ambient CO2 (410
ppm) and four elevated CO2 plots (600 ppm) into liquid N2. Leaf
tissue was freeze-dried, powdered, and kept at −80°C until
analysed.

Leaf biomass measurements

Total cell wall and total lipid were analysed by weight following
selective extraction according to Poolman et al., 2009. Starch was
assayed by enzymatic digestion according to Smith and Zeeman
(2006), except that the tissue was extracted in methanol–chloroform
and the released glucose was analysed by gas chromatography–
mass spectrometry (GC-MS) following Lisec et al. (2006). The insolu-
ble material following starch digestion was used for the determina-
tion of cell wall sugar composition as follows: the insoluble material
was washed twice with 70% (v/v) ethanol and then incubated with 2
M trifluoracetic acid at 120°C for 1 h to hydrolyse the cell wall to com-
ponent sugars that were recovered, derivatized, and quantified by
GC-MS (Lisec et al., 2006). The amino acid content of total protein
was determined by selective extraction of total protein, acid hydroly-
sis, and quantification of released amino acids by GC-MS according
to Long and Antoniewicz (2014). The fatty acid content of lipids was
analysed by solvent extraction of total lipid, esterification to produce
fatty acid methyl esters and quantification of fatty acid methyl esters
by GC-MS according to Laurens et al. (2012). Soluble metabolite
profiles were obtained by GC-MS analysis of methanol–chloroform
extracts according to Lisec et al. (2006).

ODE leaf model

The e-photosynthesis model (Zhu et al., 2013) is an ODE-based
metabolic model of C3 photosynthesis encoded in MATLAB. This
model was built as a generic C3 photosynthesis model and was
not parameterized for any specific species but built from averages
across species where individual kinetic parameters had been
determined experimentally. To simulate the photosynthetic rate of
soybean under various CO2 conditions, the estimated CO2 uptake
rate of the e-photosynthesis ODE model was calibrated using
measured gas exchange data for soybean leaves (Bernacchi et al.,
2005). The calibration was achieved by adjusting the maximum
enzyme activity of RuBisCo (Vm_Rubisco) in the e-photosynthesis
model so that the simulated maximum activity of RuBisCo
(Vcmax_s) was equal to the measured Vcmax of soybean (Bernacchi
et al., 2005). This required Vm_Rubisco to be increased to 1.33 times

that of the value used in the original e-photosynthesis model
(Vm_Rubisco_o) (Figure S2). Maximum activities of other Calvin–Ben-
son Cycle and starch synthesis enzymes (Vm_E) were also linearly
transformed so that the simulated maximum RuBP regeneration
rate (Jmax_s) was equal to the measured maximum RuBP regenera-
tion rate (Jmax) of soybean (Bernacchi et al., 2005). This required
Vm_E to be increased to 1.36 times the value used in the original e-
photosynthesis model (Vm_E_o) (Figure S2). Calibrating the model
in this manner was found to achieve the purpose of fitting the
model to soybean Vcmax and Jmax data with the least number of
parameters introduced into the model. Thus, the calibrated maxi-
mum rates of the photosynthetic enzyme activities were:

Vm Rubisco ¼ Vm Rubisco o � αRubisco (5)

Vm E ¼ Vm E o � αE (6)

where αRubisco is 1.33 and αE is 1.36 (Figure S1). Adjusted parame-
ters for these enzymes are listed in Table S8. All other parameters
were the same as those used in the original e-photosynthesis
model (Zhu et al., 2013). Finally, to avoid unreasonable results,
constraints were added to ensure reaction rates of
glyceraldehyde-3-phosphate dehydrogenase and starch degrada-
tion were always non-negative.

For each simulation of the kinetic model, the slope of the
change of CO2 assimilation rate with time and each metabolite
concentration was checked to evaluate whether the model had
reached a steady state.

FBA leaf model

An updated version (v2.0.0, model curation log presented in Data
S7) of the previously published charge and proton-balanced PLANT-

COREMETABOLISM model (Shameer et al., 2020) was used in this study
to generate FBA models. Glycine max specific gene–protein–reac-
tion associations were gathered from the PlantCyc Soy Pathway/
Genome Database (PGDB) (https://www.plantcyc.org/). Data from
the cropPAL database (Hooper et al., 2016) was used to ensure
gene–protein–reaction associations were in line with known
enzyme subcellular localization. The purpose of mature leaves in
higher plants is to use light energy via photosynthesis to generate
carbon skeletons and undertake metabolism to load the phloem
sap with sugars, amino acids, and organic acids for the rest of the
plant. Owing to the lack of soybean-specific data on petiole phloem
sap composition, previously published data from tomatoes (Valle
et al., 1998; Walker and Ho, 1977) was used to generate the reaction
representing the export of sugars and amino acids into phloem
from mature leaves in prescribed proportions (Table S6). As a
nodulating legume, allantoin is considered the major leaf nitrogen
source (Fujihara et al., 1977). To model this aspect of metabolism,
the allantoin catabolism pathway was added to the model from the
PlantCyc Soy PGDB. The four hydrolases involved in breaking
down allantoin to glyoxylate releasing four moles of NH4

+ and two
moles of CO2, were assumed to be endoplasmic reticulum localized
based on annotations of the genes associated on UniProt and find-
ings from Arabidopsis (Takagi et al., 2018). Allantoin uptake into
the leaf was assumed to be facilitated via the ENT3 transporter
(Niño-González et al., 2019), which has been reported to utilize a
proton-symport mechanism (Traub et al., 2007). The charge states
of all added metabolites were predicted using MARVINSKETCH 21.9.0
(https://www.chemaxon.com) and all added reactions were
charged and proton balanced as previously (Shameer et al., 2018).
An SBML version of the soy-specific version of PLANTCOREMETABOLISM

v2.0.0 used in the study is available in Data S8.

A diel leaf FBA model was generated from the soy-specific ver-
sion of the PLANTCOREMETABOLISM model using the method described

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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elsewhere (Cheung et al., 2014; Shameer et al., 2019). This
entailed duplicating all model elements (compartments, reactions,
and metabolites) to represent daytime and night-time metabolism
and adding ‘linker’ reactions (reactions that convert daytime
metabolites to their respective night-time metabolites and vice
versa, to represent diel metabolite accumulation and consump-
tion). Linker reactions were included for chloroplast starch, vacuo-
lar sucrose, vacuolar organic acids, and vacuolar amino acids. A
complete list of all constraints used to set-up the diel leaf FBA
model is presented in Table S9. To model mature leaves, pFBA
was used to model fluxes through the metabolic network maxi-
mizing the export of sucrose and amino acids from the leaf.

Modelling metabolism of mature soybean leaves across a

range of light intensities and atmospheric CO2

concentrations

The two original models (ODE leaf model, the diel FBA leaf model)
and the two hybrid models (LC-ODE-FBA and TC-ODE-FBA) were
used to model the assimilation rate (A) in leaves experiencing a
range of light intensities and atmospheric CO2 concentrations (Ca)
The resulting assimilation rates were used to generate A-Ci and A-
PPFD curves for each model, based on the assumption that Ci =
0.7 × Ca, where Ci is the intercellular [CO2] (Ainsworth and Long,
2005; Long et al., 2004). Previously published data on assimilation
rates observed under different intercellular [CO2] and HL intensi-
ties (Morgan et al., 2004; Sun et al., 2014) and assimilation rates
observed under different light intensities and ambient [CO2] (Haile
and Higley, 2003; Yao et al., 2017; Zhang et al., 2011) were used to
evaluate the accuracy of the model predictions.

Modelling metabolism of mature soybean leaves from

plants grown in FACE experiments

Records of diurnal variations of canopy incident light intensity for
soybean in ambient [CO2] and [CO2] elevated to 550 µmolmol–1

under open air conditions using FACE technology over the grow-
ing season (Rogers et al., 2004) were collected. Hourly light inten-
sities during the experiment were estimated by linear
interpolation. Daytime leaf metabolism for each hour of the photo-
period was modelled using the ODE, FBA, LC-ODE-FBA and TC-
ODE-FBA set-ups, and CO2 assimilation, PSII electron flux and
starch accumulation rates were recorded. Leaf starch content at
noon predicted by each model was calculated by adding up all
hourly starch accumulation rate predictions from dawn to noon.
Night-time metabolism in the TC-ODE-FBA model driven by total
starch accumulated during the photoperiod, accounting for
changes in day-length over the growing season, was modelled
using the FBA model as described earlier.

Modelling metabolism in mature and growing soybean

leaves

The TC-ODE-FBA model was used to compare the metabolism of
mature and growing soybean leaves at 400 µmolmol–1 atmo-
spheric [CO2] and 1000 µmolm–2 sec–1 PPFD. Mature leaves were
modelled using TC-ODE-FBA with an objective function to maxi-
mize the export of sucrose and amino acids into the phloem using
pFBA. To model growing leaves, the biomass composition of soy
leaf was experimentally determined (Table S7) and a biomass
reaction representing the accumulation of biomass elements in
the observed ratios was added to the FBA model. The growing
leaf was then modelled by optimizing the flux distribution to max-
imize flux through the biomass reaction using pFBA during the
FBA runs of the TC-ODE-FBA model.

Model execution

The ODE model was executed on MATLAB 2020a using its ODE15s
solver. All FBA models were run on Python 3.7.6 using the cobr-
apy v0.17.1 package and the default GLPK solver. Yggdrasil was
used to coordinate the execution of the two models in their native
environments and the transfer of information between them.
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Sajitz-Hermstein, M., Töpfer, N., Kleessen, S., Fernie, A.R. & Nikoloski, Z.

(2016) iReMet-flux: constraint-based approach for integrating relative

metabolite levels into a stoichiometric metabolic models. Bioinformatics,

32, i755–i762.
Scheible, W.-R., Gonzalez-Fontes, A., Lauerer, M., Muller-Rober, B.,

Caboche, M. & Stitt, M. (1997) Nitrate acts as a signal to induce organic

acid metabolism and repress starch metabolism in tobacco. The Plant

Cell, 9, 783–798.
Scheunemann, M., Brady, S.M. & Nikoloski, Z. (2018) Integration of large-

scale data for extraction of integrated Arabidopsis root cell-type specific

models. Scientific Reports, 8, 7919.

Schroeder, W.L. & Saha, R. (2020) Introducing an optimization- and explicit

Runge-Kutta-based approach to perform dynamic flux balance analysis.

Scientific Reports, 10, 9241.

Sellers, P.J., Tucker, C.J., Collatz, G.J., Los, S.O., Justice, C.O., Dazlich, D.A.

et al. (1996) A revised land surface parameterization (SiB2) for atmo-

spheric GCMs. Part II: The generation of global fields of terrestrial bio-

physical parameters from satellite data. Journal of Climate, 9, 706–737.
Shameer, S., Baghalian, K., Cheung, C.M., Ratcliffe, R.G. & Sweetlove, L.J.

(2018) Computational analysis of the productivity potential of CAM.

Nature Plants, 4, 165–171.
Shameer, S., Ratcliffe, R.G. & Sweetlove, L.J. (2019) Leaf energy balance

requires mitochondrial respiration and export of chloroplast NADPH in

the light. Plant Physiology, 180, 1947–1961.
Shameer, S., Vallarino, J.G., Fernie, A.R., Ratcliffe, R.G. & Sweetlove, L.J.

(2020) Flux balance analysis of metabolism during growth by osmotic

cell expansion and its application to tomato fruits. The Plant Journal,

103, 68–82.
Shaw, R. & Cheung, C. (2018) A dynamic multi-tissue flux balance model

captures carbon and nitrogen metabolism and optimal resource parti-

tioning during Arabidopsis growth. Frontiers in Plant Science, 9, 884.

Simons, M., Saha, R., Amiour, N., Kumar, A., Guillard, L., Clément, G. et al.

(2014) Assessing the metabolic impact of nitrogen availability using a

compartmentalized maize leaf genome-scale model. Plant Physiology,

166, 1659–1674.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2022), 109, 295–313

312 Sanu Shameer et al.

 1365313x, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.15551 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [04/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Siriwach, R., Matsuda, F., Yano, K. & Hirai, M.Y. (2020) Drought stress

responses in context-specific genome-scale metabolic models of Arabi-

dopsis thaliana. Metabolites, 10, 159.

Smith, A.M. & Zeeman, S.C. (2006) Quantification of starch in plant tissues.

Nature Protocols, 1, 1342–1345.
South, P.F., Cavanagh, A.P., Liu, H.W. & Ort, D.R. (2019) Synthetic glycolate

metabolism pathways stimulate crop growth and productivity in the

field. Science, 363, eaat9077.

Sun, J., Feng, Z., Leakey, A.D., Zhu, X., Bernacchi, C.J. & Ort, D.R. (2014)

Inconsistency of mesophyll conductance estimate causes the inconsis-

tency for the estimates of maximum rate of Rubisco carboxylation

among the linear, rectangular and non-rectangular hyperbola biochemi-

cal models of leaf photosynthesis—A case study of CO2 enrichment and

leaf aging effects in soybean. Plant Science, 226, 49–60.
Takagi, H., Watanabe, S., Tanaka, S., Matsuura, T., Mori, I.C., Hirayama, T.

et al. (2018) Disruption of ureide degradation affects plant growth and

development during and after transition from vegetative to reproductive

stages. BMC Plant Biology, 18, 287.

Tcherkez, G., Gauthier, P., Buckley, T.N., Busch, F.A., Barbour, M.M.,

Bruhn, D. et al. (2017) Leaf day respiration: low CO2 flux but high sig-

nificance for metabolism and carbon balance. New Phytologist, 216,

986–1001.
Tcherkez, G. & Hodges, M. (2008) How stable isotopes may help to eluci-

date primary nitrogen metabolism and its interaction with (photo)respi-

ration in C3 leaves. Journal of Experimental Botany, 59, 1685–1693.
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