
in silico Plants Vol. 4, No. 1, pp. 1–13
https://doi.org/10.1093/insilicoplants/diac003
Advance Access publication 12 February 2022
Original Research

• 1This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company.

BioCro II: a software package for modular crop
growth simulations

Edward B. Lochocki1, , Scott Rohde1, Deepak Jaiswal1,2,3, Megan L. Matthews1,4, ,
Fernando Miguez5, Stephen P. Long1,6,7,8, and Justin M. McGrath1,6,9,* ,

1Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801, USA
2Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Palakkad, Kerala 678557, India

3Department of Civil Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678557, India
4Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA

5Department of Agronomy, Iowa State University, Ames, IA 50011, USA
6Plant Biology Department, University of Illinois, Urbana–Champaign, Urbana, IL 61801, USA

7Crop Sciences Department, University of Illinois, Urbana–Champaign, Urbana, IL 61801, USA
8Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK

9USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA
*Corresponding author’s e-mail address: justin.mcgrath@usda.gov

Handling Editor: Xin-Guang Zhu

Citation: Lochocki EB, Rohde S, Jaiswal D, Matthews ML, Miguez F, Long SP, McGrath JM. 2021. BioCro II: a software package for modular crop growth
simulations. In Silico Plants 2022: diac003; doi: 10.1093/insilicoplants/diac003

A B S T R A C T
The central motivation for mechanistic crop growth simulation has remained the same for decades: to reliably

predict changes in crop yields and water usage in response to previously unexperienced increases in air temperature
and CO2 concentration across different environments, species and genotypes. Over the years, individual process-
based model components have become more complex and specialized, increasing their fidelity but posing a challenge
for integrating them into powerful multiscale models. Combining models is further complicated by the common
strategy of hard-coding intertwined parameter values, equations, solution algorithms and user interfaces, rather than
treating these each as separate components. It is clear that a more flexible approach is now required. Here we describe
a modular crop growth simulator, BioCro II. At its core, BioCro II is a cross-platform representation of models as sets
of equations. This facilitates modularity in model building and allows it to harness modern techniques for numerical
integration and data visualization. Several crop models have been implemented using the BioCro II framework, but
it is a general purpose tool and can be used to model a wide variety of processes.

K E Y W O R D S : Dynamical systems; mechanistic crop growth simulation; modular modelling; multiscale modelling.

1 . I N T R O D U C T I O N
Mechanistic crop growth simulations play key roles in understanding
the impact of global change on agriculture and in directing efforts to
engineer plants capable of feeding the future world (Clark et al. 2001;
Menon et al. 2007; LeBauer et al. 2013; Marin et al. 2014). By repre-
senting critical aspects of plant biology as biochemical processes rather
than statistical associations, these simulations are able to capture the
underlying mechanisms determining crop yields and water usage out-
side of empirical experience, such as those expected to occur due to
climate change (Humphries and Long 1995). Given their importance,

it is essential to ensure that these crop growth models are accessible to
experts in these mechanisms who do not have the time or inclination
to delve into details of computer science. Communication between
these experts is critical for assembling and maintaining a state-of-the-
art capacity to predict crop responses to environmental change. The
software package WIMOVAC (Humphries and Long 1995; Song et al.
2017) was an early success in this area, facilitating investigations into
the response of plants to elevated atmospheric CO2 concentrations
(Rogers and Humphries 2000; Wittig et al. 2005) and eventually giv-
ing rise to a successor, BioCro, that expanded the list of available crops

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4912-9783
https://orcid.org/0000-0002-5513-9320
https://orcid.org/0000-0002-8501-7164
https://orcid.org/0000-0002-7025-3906
mailto:justin.mcgrath@usda.gov?subject=

2 • Lochocki et al.

(Miguez et al. 2012, 2009; Wang et al. 2015; Larsen et al. 2016; Jaiswal
et al. 2017).

As the field of mechanistic crop growth simulation has progressed,
the individual components of these models have grown more realis-
tic but also more complex and specialized. For example, idealized
roots can now be replaced with realistic three-dimensional structures
(Postma et al. 2017) and simplified photosynthetic equations can
be replaced by detailed kinetic models (Zhu et al. 2013). However,
the previous version of BioCro and other similar software packages
do not facilitate the process of replacing one model subcomponent
with another because their source code intermixes parameter values,
model equations, numerical solution algorithms and user interfaces.
Modifying one component, such as the photosynthesis equations,
required changes in many places throughout the code, is challeng-
ing for those unfamiliar with the software, and is inefficient and error
prone. Consequently, these packages are slow to take advantage of new
developments.

A more flexible structure, where a model’s equations are separated
from the details of its solution, would address this. Such a modular
crop growth simulation software can be understood as being analo-
gous to acquiring a car by passing specifications to a dedicated factory
(Fig. 1). By contrast, the prevailing approach is more like the brute-
force alternative of fabricating and assembling a car from raw materials.
The advantages of the modular approach are numerous, with some of
the most significant being that the user (i) does not need the special-
ized knowledge required to perform the simulation, (ii) is easily able
to swap model components for newer or more specialized versions
when they become available and (iii) can build an understanding of

individual model components as well as their interactions within the
context of the entire model, taking advantage of the logical bounda-
ries made by the module writers. Here we present a fully modular ver-
sion of BioCro—BioCro II—that implements this vision and allows
modellers to focus on biology rather than computer programming.
We describe the essential elements of its design and demonstrate how
it allows users to harness the power of new model components and
quantitatively compare their responses to environmental and physi-
ological factors.

1.1 An illustrative example
To give an overview of BioCro II’s design and usage, a simple model
is presented (Listing 1). It is a simplistic growth model that demon-
strates the main parts of BioCro II but does not represent a particular
crop; the light profile and growth rate are both unrealistic. The canopy
assimilation rate (A) is calculated based on the incident light intensity
(Q), leaf mass (Leaf), specific leaf area (SLA) and a radiation use effi-
ciency (RUE) factor (αRUE). Leaf and root mass increase as fractions
(fleaf and froot) of A are allocated to those tissues, with known initial val-
ues of those masses (Leaf(0) and Root(0)). Light intensity is given as
a table of values at every second in a 24-h period. For this model, we
desire a solution at those same time points.

It is noteworthy that this model can be viewed as a set of equations;
even the discrete values of Q can be considered a set of equations.
Treating all components as equations allows one to think about all
parts of a model in the same manner, enabling simpler model specifica-
tion and less code. BioCro II has been designed to facilitate this way
of thinking, and one of its key features is that sets of equations can be

A

B

Figure 1. (A) Schematic diagram illustrating the process of acquiring a car by choosing parts from a catalogue, supplying
additional specifications and sending this information to a factory where dedicated experts take care of fabrication and assembly.
(B) Analogous schematic diagram illustrating the process of running a crop growth simulation by choosing equations from
a library, supplying additional specifications and sending this information to the BioCro engine, which solves the model and
calculates the results. Book, paper, factory, car and computer clipart images were obtained under open licenses from https://
creazilla.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

https://creazilla.com
https://creazilla.com

BioCro II • 3

grouped and named. In the BioCro II R package, a model is defined
and solved by passing the names of equation sets to the run_bio-
cro function, which assembles the equations, performs basic checks
that the model is solvable and then numerically solves it. Using the
names shown for the equation subsets in Listing 1, the model solution
would be obtained in the R environment as follows:

run_biocro(initial_values, parameters,
light_intensity, 'example_model_carbon_
gain', 'example_model_partitioning')

The result contains values for each quantity in the model at each desired
time point in the period (Fig. 2). Details of the syntax and how to define
sets of equations are given in Appendix 1 and Section 2 of A Practical
Guide to BioCro (see Supporting Information). In this manuscript, the
emphasis is that the concept of named sets of equations provides a way

to piece together models that is flexible and familiar to modellers. This
feature, along with the ability to combine models or exchange similar
submodels, allows for easier development and comparisons. Although
no individual feature of BioCro II is unique, we believe that the combi-
nation of modularity, scripting access through R and open-source code
is unique among popular modelling software. A summary of BioCro
II compared to other modelling software is provided in Supporting
Information—Section S4, and an example of swapping submodels
and comparing their performance is presented in Section 3.

Since several crops can be modelled using the existing library of
equations included in the R package, much can be accomplished using
the R environment by only varying parameters and other inputs, such
as weather conditions. Thus, simulations can be performed for various
regions and climates, parameters can be optimized to match observed
data and sensitivity analyses can be performed without modifying the
source code of BioCro II.

Listing 1. A simple crop growth model simulating root and leaf growth over a period of 1 day. The model itself is simply a list of
equations, but the equations can be arbitrarily grouped into sets for convenience.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

https://
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data

4 • Lochocki et al.

2 . O V E R V I E W O F B I O C R O I I
O R G A N I Z AT I O N A N D F U N C T I O N A L I T Y

As illustrated by the example above (Listing 1), BioCro II facilitates the
construction of models from modular sets of equations. This ability is
enabled by the careful arrangement of its source code, which contains
several examples of modularity at different levels of its organization.
Here we give a broad overview of the source code structure. While of

general benefit to most users, this knowledge is required to modify or
add new sets of equations.

BioCro II is written primarily in C/C++ and is accessible through
an R package that provides a more user-friendly terminal-based inter-
face (Fig. 3A; source code is available in the Biocro.tar.gz file of the
Supporting Information). The interface consists of two sets of func-
tions: R-to-C functions, which convert R objects to C objects and
pass them to core BioCro II functions, and R functions, which pass
R objects to the R-to-C functions. This is an example of modularity at
the highest level of the code organization and it provides several key
benefits. Accessing BioCro II via R provides simple routes for data
input and analysis, especially considering the wide array of librar-
ies available for statistical operations and plotting. This design is also
flexible enough to allow other interfaces in the future; for example, a
Python interface could be developed by writing appropriate Python
and Python-to-C files, without needing to duplicate any of the central
code related to BioCro’s main operations.

The central code itself is also split into several distinct groups: the
module library, the ordinary differential equation (ODE) solver library
and the solution framework (Fig. 3B). In BioCro II, a module repre-
sents one or more equations that define a model component; for exam-
ple, the ball_berry module uses the first equation in Ball et al. (1987)
to calculate a leaf ’s stomatal conductance to water vapour (gsw). Each
module has associated input quantities and output quantities, which are
all numeric variables with names such as conductance_stomatal_h2o
(representing gsw). Modules are divided into two broad types based
on how time is used in the equations: differential modules, which cal-
culate rates of change for output quantities, and direct modules, which
calculate instantaneous values for output quantities. When performing
a simulation, the user specifies a list of modules that then are combined
to form the overall crop model. BioCro II’s standard module library is
capable of replicating the full functionality of the original BioCro, but
researchers can also develop their own module components privately
and use them in conjunction with the standard BioCro II modules. The

Figure 3. Schematic diagram illustrating the organization and functionality of BioCro’s source code. Components are shown as
boxes, and steps to determine the model solution are shown as numbered items. (A) At the highest level, an R interface to the
central C/C++ files is provided via R and R-to-C files. (B) The main C/C++ code is divided into three distinct groups: the module
library, the ODE solver library and the solution framework. (C) To perform a simulation, the user passes a set of modules, an
ODE solver and other specifications to the framework, which defines the state, checks the equations and inputs for validity and
solves for the value of each of the unknown quantities over the time domain of the simulation.

Figure 2. Graphical representation of the solution of the simple
model presented in Listing 1 showing how some of the model’s
quantities change overtime.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

BioCro II • 5

BioCro II R package additionally gives users the ability to calculate
output quantities from individual modules (via the evaluate_module
function), allowing a single module’s behaviour to be demonstrated
and visualized.

Another essential component of BioCro II is the numerical ODE
solver, which determines the time evolution for those quantities whose
derivatives are calculated by differential modules (henceforth called ‘dif-
ferential quantities’). In the original BioCro, ODE solving was carried out
exclusively using the fixed-step Euler method. However, this algorithm
is known to be computationally inefficient and inaccurate when solving
oscillatory systems or those with exponential growth or decay, often pro-
ducing an unstable output (Flannery et al. 1992). In BioCro II, users can
instead choose an algorithm from the built-in ODE solver library. The
library includes more advanced options from Boost odeint library (‘Boost
C++ Libraries, version 1.71.0,’ 2019), such as the adaptive fourth-order
Rosenbrock method, which is particularly well suited for solving stiff sys-
tems. The separation between a crop growth model’s equations and its
solution method is a key feature of BioCro II that allows those without
expertise in numerical methods to harness the power of modern ODE
solving algorithms without needing to delve into their intricate details.

To perform a simulation, a user must supply lists of direct and differ-
ential modules, a numerical ODE solving algorithm and the following
values for quantities: (i) the initial values of the differential quantities,
(ii) weather data and other time-dependent quantities that are taken as
known beforehand and (iii) values of quantities that are assumed con-
stant for the period of the simulation. The separation of model param-
eters and weather data from the model equations represents another
instance of modularity in BioCro II. Using the R package, a simulation
can be run with the run_biocro function. Its arguments are ultimately
passed to the solution framework, which handles the details of defining
and solving the model (Fig. 3B and C): First, a set of state quantities
is identified from the modules and other inputs. Then, the quantities
and modules are checked for consistency and validity—for example, to
ensure all module input quantities are defined. Finally, the ODE solver
is used to determine the time evolution of the quantities defined by
derivatives, which simultaneously determines the time evolution for
other unknown quantities defined by direct modules. These actions
are all performed automatically by the BioCro II framework, which
handles the details of the solution, so the user can focus on the science.

Using the same equations, values and solution algorithms, BioCro
II produces results similar to those produced by the previous ver-
sion and uses slightly less computational time [see Supporting
Information—Section S3]. The amount of model code is much
smaller though, since modules are reused, eliminating code repetition.
For more details about the functions and library entries available in the
BioCro II R package, see A Practical Guide to BioCro (see Supporting
Information) or the online documentation (https://ebimodeling.
github.io/biocro-documentation/).

3 . Q UA N T I TAT I V E C O M PA R I S O N B ET W E E N
T W O P H O TO S Y N T H E S I S M O D E L S

A common reason for developing or using a new mathematical model is
to represent a particular behaviour or phenomenon in a more realistic
way. For example, replacing an empirical statistical model with a mech-
anistic process-based model can improve the accuracy of the model’s

predictions in situations outside experience. The ability to compare the
output of two models quantitatively is key to this effort, since it can
provide evidence that the new model is truly an improvement.

The modular structure of BioCro helps facilitate these types of
comparisons, which can be illustrated by contrasting two models
for carbon assimilation in soybean. Many crop growth simulations
have relied on the concept of RUE to relate biomass accumulation
to the available sunlight. This model simplifies complex environ-
mental and biological interactions into a simple-to-use empirical
model (Sinclair and Muchow 1999) with several variants that are all
based on the observation that a measure of cumulative growth (e.g.
net canopy CO2 uptake or total above-ground dry matter) is often
directly proportional to a measure of cumulative radiation expo-
sure (e.g. intercepted solar radiation or absorbed photosynthetically
active radiation) (Demetriades-Shah et al. 1992; Arkebauer et al.
1994). In contrast to RUE, it is also possible to calculate the CO2
assimilation rate for a C3 plant leaf using a set of equations represent-
ing the steady-state biochemical processes of photosynthesis, most
commonly the Farquhar–von-Caemmerer–Berry (FvCB) model
(Farquhar et al. 1980).

3.1 Soybean simulation details
Surface radiation, temperature, relative humidity and wind
speed data were obtained for the years 1995 through 2020 from
SURFRAD’s Bondville, Illinois station (40°03′07″N, 88°22′23″W)
(Augustine et al. 2000) and converted to hourly values using a previ-
ously described method (Lochocki and McGrath 2021). Daily pre-
cipitation totals were obtained from WARM’s Champaign, Illinois
weather monitoring station (40°05′02″N, 88°22′23″W) (Illinois
State Water Survey 2015) and converted to hourly values by assum-
ing a constant rate of rainfall during each day. Annual global mean
values for atmospheric CO2 concentration were obtained from the
National Oceanic and Atmospheric Association’s Global Monitoring
Laboratory (NOAA 2021).

Default modules and parameter values for soybean simulations are
identical to those reported previously (Matthews et al. 2021). As in
that study, ODE solving was performed using the fifth-order Runge–
Kutta method with fourth-order Cash–Karp error estimation (‘Boost
C++ Libraries, version 1.71.0,’ 2019), available in the BioCro II ODE
solver library as boost_rkck54. The algorithm adaptively chooses time
steps based on absolute and relative error tolerances, which were set to
1 × 10−4 for all simulations. While solving ODEs, each weather quan-
tity was treated as a continuous piecewise function defined by linear
interpolation between the hourly values.

3.2 RUE versus FvCB photosynthesis models in
soybean for a single year

For a full soybean simulation, a photosynthesis model must be com-
bined with other model components that represent processes such as
phenological development, assimilate distribution, senescence, water
dynamics and others. The BioCro II R package includes preset lists of
modules and parameters that have been optimized to reproduce exper-
imentally observed soybean biomass in both ambient and elevated
levels of CO2 (Matthews et al. 2021). These can be used to run a full
simulation for the year 2002 with the following R command:

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data
https://
https://
https://ebimodeling.github.io/biocro-documentation/
https://ebimodeling.github.io/biocro-documentation/

6 • Lochocki et al.

run_biocro(soybean_initial_values, soy-
bean_parameters, soybean_weather2002,
soybean_direct_modules, soybean_differ-
ential_modules, soybean_ode_solver)

The objects soybean_direct_modules and soybean_
differential_modules are lists of module names used by the
soybean model. In this simulation, photosynthesis at the canopy level
is determined using the ten_layer_c3_canopy module, which
divides the canopy into 10 equal layers and then divides each layer into
shaded and sunlit proportions. It then uses the light level for shaded
and for sunlit leaves in each layer to determine CO2 assimilation rate
from coupled equations representing respiration, stomatal opening,
transpiration and the FvCB model for photosynthesis (Humphries
and Long 1995).

Alternatively, it is possible to replace the mechanistic photosyn-
thesis model with a simpler one based on RUE, where the canopy is
divided into layers as before but the gross CO2 assimilation rate at the
leaf level (Agross) is determined from the incident photosynthetically
active photon flux density (PPFD; Q) according to

Agross = αRUE · Q
 (1)

where αRUE is the efficiency with which light energy is used to assimilate
carbon. Here, both Agross and Q are expressed in units of μmol m−2 s−1,
making αRUE dimensionless. A canopy photosynthesis module imple-
menting Equation (1) is available in the BioCro II module library, so
the FvCB model can be replaced with a RUE model from R using just
two lines:

soybean_direct_modules$canopy_photo-
synthesis <- 'ten_layer_rue_canopy'

soybean_parameters$alpha_rue <- XXX

where XXX is a placeholder for an arbitrary value assigned to αRUE.
Following this change, the run_biocro function can now be used
to simulate soybean growth with the RUE model in place of the mecha-
nistic FvCB model. By varying the value of αRUE to minimize the differ-
ence between total end-of-season biomass values calculated using each
of the FvCB or RUE models [see Supporting Information—Section
S2], it is possible to achieve close agreement throughout the growing
season despite the very different approaches used to determine Agross
(Fig. 4A).

The origin of this agreement can be investigated by examining the
relationship between gross assimilation and PPFD in the two models.
In the RUE model, there is a purely linear relationship, while in the
FvCB model, photosynthesis eventually begins to level off at higher
light intensities (Fig. 4B). The value of αRUE that minimizes the differ-
ence between end-of-season yield of the two models is simply one that
agrees with the FvCB model on average for the conditions experienced
throughout the season; in general, the RUE model underestimates
assimilation at lower light intensities and overestimates at higher inten-
sities, producing an overall similar effect on Agross and end-of-season
yield. However, this balance is fragile and specific to a particular time
and place because the FvCB model also responds to environmental

factors such as the atmospheric CO2 concentration ([CO2]), relative
humidity (RH) and temperature (T) without re-parameterization, as
evidenced by the multiple values for Agross that are possible for each
value of Q in Fig. 4B.

3.3 Sensitivity analysis of the RUE and FvCB
photosynthesis models

To better understand the response of the mechanistic photosynthesis
model to environmental factors, and hence to reveal the dynamics that

Figure 4. (A) Biomass for several soybean tissues (root, stem,
grain and leaf) calculated throughout the 2002 growing
season in Champaign, IL using either the mechanistic FvCB
model for C3 photosynthesis or an empirical RUE model with
αRUE = 0.0354. (B) Individual (Agross, Q) pairs calculated with
the FvCB model extracted from all leaf classes, canopy layers
and times during 2002 (transparent circles) compared with the
output from the RUE model (solid black line).

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data

BioCro II • 7

are not included in the RUE model, it is useful to calculate normalized
sensitivity coefficients for Agross, defined by

cx(Agross) ≡
ï
∂Agross/∂x
Agross,0/x0

ò
 (2)

where ∂Agross/∂x is the partial derivative of Agross with respect to some
parameter x (e.g. light intensity or temperature) determined at a specific
base value (x0), and Agross,0 is the value of Agross at x0. Essentially, cx(Agross)
represents the fractional increase in Agross per fractional increase in x
and therefore is a measure of the influence of parameter x on the model
output. In the BioCro R package, the evaluate_module function
provides a generic interface to any module, allowing the user to spec-
ify the values of the module’s input quantities and solve its equations
for the values of its output quantities. Applying this function to the
c3_leaf_photosynthesis and rue_leaf_photosyn-
thesis modules, it is possible to calculate numerical derivatives for
Agross from each module, and therefore values for the normalized sensi-
tivity coefficients cx(Agross). This process can be repeated with multiple
independent variables x and at multiple values for the incident PPFD
to produce a curve of sensitivity coefficients at different PPFD values,
which shows how the models respond to environmental conditions at
different light levels (Fig. 5A).

From this analysis it is clear that atmospheric [CO2] and air tem-
perature have the largest impact on gross assimilation. Increases in
atmospheric [CO2] cause increases in gross assimilation at all light
levels, while increased temperature reduces assimilation at low light
levels and increases it at high light levels. The corresponding sensitivity
curves for the RUE model (not shown) are all identically zero since
the RUE model does not consider any of these environmental factors
when calculating assimilation rates. Thus, this analysis highlights the
major discrepancies between the RUE and FvCB models.

However, when calculating total biomass throughout a soybean
growing season, the photosynthesis model is embedded in a larger
model representing additional physiological processes such as devel-
opment, carbon distribution, carbon utilization, respiration, senes-
cence, water availability and others. Since some of these processes may

also respond to air temperature and atmospheric [CO2], it is also use-
ful to calculate sensitivity coefficients for the total biomass M through-
out a season in response to changes in a variable x according to

Cx(M) ≡
ï
∂M/∂x
M0/x0

ò
 (3)

Although this formula is nearly identical to Equation (2), the method
of calculation is different since M is the output of an entire simula-
tion rather than a single model component; thus, instead of using
evaluate_module, the run_biocro function is used to cou-
ple and numerically solve the sets of model equations.

The result of this analysis applied to temperature (Fig. 5B) shows
that the temperature response of total biomass is not significantly dif-
ferent between the RUE and FvCB models, due to the temperature
dependence of other submodels involved in the simulation. On the
other hand, the response of biomass to atmospheric [CO2] is signifi-
cantly different between the two models, with the RUE model hav-
ing almost no response at all (Fig. 5C). Thus, although the RUE and
FvCB models for photosynthesis differ greatly in the response of gross
assimilation to several environmental factors such as relative humid-
ity, wind speed, air temperature and [CO2], it is likely that changes in
[CO2] will play the largest role in any discrepancies between models
differing only in C3 and RUE equations when considering the growth
simulations as a whole.

3.4 RUE versus FvCB photosynthesis models in
soybean for multiple years

Applying the model to weather data from 2006 but using the same
value for αRUE determined in 2002 reveals that the models have
diverged, exhibiting larger differences in grain biomass (Fig. 6A).
As expected, the delicate balance that produced good agreement in
2002 does not hold in another year where environmental conditions,
including atmospheric [CO2], are different. Looking across all years,
the two models disagree more often than they agree (Fig. 6B). Finally,
by plotting the discrepancy against atmospheric [CO2], there is a clear
downward trend, indicating that the RUE model underestimates total

A B C

Figure 5. Normalized sensitivity coefficients for (A) FvCB gross assimilation calculated with respect to [CO2], relative humidity,
water stress, air temperature and wind speed for different levels of incident PPFD, where base values are RH = 0.89, air
temperature = 25 °C, wind speed = 5 m s−1, atmospheric [CO2] = 372 ppm and water stress = 0.99; (B) total biomass calculated
with respect to air temperature during the 2002 growing season; and (C) atmospheric [CO2] during the 2002 growing season.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

8 • Lochocki et al.

biomass when [CO2] increases, causing an error as large as 5 % for the
years considered as compared to the more mechanistic FvCB model
(Fig. 6C).

It is crucial to note that while high-level qualitative differences
between the RUE and FvCB models can be gleaned immediately by
the forms of their equations (e.g. the RUE model will not respond to
changes in humidity), it is difficult to tell which differences will be
most significant when embedding these models in larger crop growth
simulations, and impossible to determine the size of the differences
introduced into a simulation by using the empirical RUE model. The
modularity of BioCro II facilitates a quantitative exploration of the dif-
ferences between these models, where an understanding can be built
up from the leaf-level photosynthesis scale to the field season scale.
Not only is this analysis possible with BioCro II, it is also straightfor-
ward (see the Quantitative Model Comparison document and its associ-
ated R script in the Supporting Information), and can easily be applied
to other aspects of plant growth modelling, such as assimilate distribu-
tion and stomatal opening. Here we have provided just one example
of how BioCro II can be utilized to examine the costs and benefits of
using simple versus more mechanistic models for different processes
underlying crop yield in different environments, allowing the user to
choose what is fit for their specific purpose.

4 . B I O C R O I I A S A C R O S S -
P L AT F O R M R E P R E S E N TAT I O N O F

A D Y N A M I C A L S Y S T E M
Introducing modularity into BioCro by separating the model equa-
tions, parameter values and the method of solution from each other
makes the software easier to use and maintain, but this modification
also has the additional benefit of allowing BioCro II to follow the
general structure of a dynamical system. Dynamical systems can be
used to specify a wide variety of mathematical models and consist of
three parts:

 1. A set of quantities of interest, which is called the state and
symbolized by X (see Supporting Information—Section
S1 for a discussion of this terminology). Here, a quantity is

specified by a name (e.g. temperature) and takes a numeric
value (e.g. 25 °C); likewise, a state is specified by the names of
its constituent quantities and takes a vector value formed from
the values of its constituent quantities.

 2. An independent quantity on which the state’s value depends,
which is often taken to be the time (symbolized by t).

 3. An evolution rule that describes how to determine the state’s
value at a future time given its value at the current time, which
is often implicitly formed from a set of equations coupled with
a numerical solution algorithm.

With these three components, the state’s value can be determined at
any time point; a sequence of state values determined at a sequence of
times is called the solution of the dynamical system. This is an extremely
flexible design that inherently separates the definition of a model from
the calculation of its solution. Defining a dynamical system is also
relatively simple, as it is formed by a list of equations and quantities.
Owing to this simplicity and flexibility, framing models as dynamical
systems is nearly ubiquitous across a wide range of fields.

Although we use a definition that makes no distinction between
types of state quantities in the concept of a dynamical system, for prac-
tical reasons, BioCro divides the state quantities into several subsets
based on the structure of their equations. Each of these subsets is an
input argument of the run_biocro R function and defines one or
more of the components of a dynamical system as follows (see also
Fig. 7 and A Practical Guide to BioCro in the Supporting Information):

• parameters: specifies Xparameter, the state quantities that do
not change with time; also defines the corresponding values.

• drivers: specifies Xdriver, the state quantities whose time-
dependent values are taken as known beforehand at a
discrete set of time points; also defines the corresponding
values and the valid time domain.

• direct modules: specifies Xdirect, the state quantities whose
instantaneous values are determined from functions of time
and the other state elements; also defines the corresponding
equations.

A B C

Figure 6. (A) Biomass for several soybean tissues (root, stem, grain and leaf) calculated throughout the 2006 growing season in
Champaign, IL using either the mechanistic FvCB model for C3 photosynthesis or an empirical RUE model with αRUE = 0.0354,
which was optimized for agreement in 2002. (B) Total biomass at the end of the growing season calculated for the years 1995–
2018 using the RUE and FvCB models for photosynthesis. (C) The biomass difference MRUE − MFvCB expressed as a percentage
plotted against average global atmospheric [CO2] for the years 1995–2018.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

https://
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data
http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diac003#supplementary-data
https://

BioCro II • 9

• differential modules: specifies Xdifferential, the state quantities
that evolve from initial values according to differential equa-
tions; also defines the corresponding equations.

• initial values: defines the initial values of the quantities in
Xdifferential.

• numerical ODE solver: defines the algorithm used
to determine the time dependence of the quantities in
Xdifferential; also defines the set of time points at which the
state’s value should be determined.

This information is sufficient to fully define and solve the dynamical
system, as described in Appendix 2.

Framed in this way, BioCro II is a general tool to define and solve
a dynamical system. Its framework is in fact completely free of any
assumptions about the simulation’s purpose. While the default mod-
ule library is clearly specialized for crop growth simulations, BioCro
II could in principle be used for models representing other aspects of
plant biology or even models from entirely different scientific fields,
provided they can be represented using the available types of evolu-
tion rules. This is not a strong constraint, although it would require
reformulating any higher-order differential equations as systems of
first-order differential equations and discretizing any partial differen-
tial equations.

5 . D I S C U S S I O N A N D C O N C LU S I O N S
As a fully modular crop growth simulation software package that imple-
ments a cross-platform representation of a general dynamical system
solver, BioCro II has several important advantages to offer to its users:

• Defining a model is completely separate from solving it,
allowing the user to focus on biology instead of computer
science.

• Model components can easily be swapped for alternative
versions, to better match the available experimental inputs,
to take advantage of new developments or to compare alter-
native components, as in the example of RUE versus FvCB.

• BioCro II modules can be developed privately, so users
can withhold access to model components until after
publication.

• Sensitivity analysis is straightforward to perform since all
parameters are specified outside the model equations and
their values can easily be changed.

• The performance and sensitivity of alternative model com-
ponents can be compared in a quantitative way within the
framework.

• The robustness of the simulation results can be probed
by convergence tests or by comparing different solution
algorithms.

• The central framework can conveniently be accessed
through the R package interface or directly through C/C++,
and other interfaces can be developed without duplicating
the essential code.

• Improvements to the framework can proceed in parallel
with improvements to the module library.

• As an open-source package, the software is free for any user.

The full impact of these properties is difficult to assess, but new pos-
sibilities are clear in three different areas: model development, sensor
integration, and crop predictions.

• Model development: Some plant-related models, such as
the transport-resistance model for carbon allocation and
utilization between and within different plant organs
(Thornley 1972), cannot be solved using the fixed-step

Figure 7. Schematic illustration of the relationship between the inputs to BioCro’s run_biocro function (solid boxes) and the
essential components of a dynamical system. pi and xi,0 are constant values; di(t) is a continuous function of time determined from
a set of values at discrete time points, for example, by linear interpolation; and Xi is the set of state quantities excluding xi.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

10 • Lochocki et al.

Euler method that was previously hard-wired into
BioCro (and is currently hard-wired into other crop
growth simulators). In this sense, separating the model
equations from the numerical ODE solver is more than
just a convenience to the user because it expands the
space of possible model components that can be used in a
simulation.

• Sensor integration: In BioCro II, no quantity must inherently
follow a particular equation structure (parameter, driver,
etc.) because the user is free to change the specifications at
the start of a simulation. Consequently, a quantity whose
value is determined by a model component could easily be
replaced by measured data when it becomes available, facili-
tating the fusion of crop modelling with smart agriculture
(Prathibha et al. 2017; Vasisht et al. 2017). For example,
one could switch from calculating soil water content using
rainfall and modelled transpiration to measuring soil water
content using sensors in the field; in the terminology of
BioCro II, this would simply be a change from a differential
quantity to a driver and would not require making changes
to any other part of the overall simulation.

• Crop predictions: Given weather data spanning multiple
years or locations and a corresponding set of observed
crop traits such as biomass, it is possible to use BioCro II to
compare the predictive power of different models that may
differ in just a few of their components. Not only can this
process help determine which models are most appropriate
for a particular type of prediction, it also provides a method
for quantifying and assessing improvements in predictive
power as new models and techniques are developed, similar
to what has been done with weather prediction (Teweles
and Wobus 1954; Kalnay et al. 1998).

In a larger context, there is currently an ongoing effort to develop
tools for coupling models to each other in a range of fields, including
earth system sciences and soil sciences (Lafolie et al. 2014; Barbi et al.
2021). The ultimate goal of this effort is to use models at different scales
to answer questions that the individual models cannot address alone
(Marshall-Colon et al. 2017). Tools such as Yggdrasil (Lang 2019)
have been developed to pass information between models, primarily as
a means to couple models in different programming languages. These
tools will make it much easier to couple models in different languages,
but passing information is not itself sufficient to ensure that models can
be coupled—there must also be a shared understanding of the struc-
ture of the information. Without such a standardized design, coupling
models would require in-depth knowledge of the one-of-a-kind imple-
mentation of each model. This is already a difficult process for just two
models; coupling multiple models could be prohibitively complex.
Moreover, if the solution methods are tightly coupled with the model
specifications, there may not be a place in the code where state values
can be passed between the programs, making coupling impossible.

Dynamical systems provide an ideal format to facilitate model
coupling since the technical details of coupling dynamical systems
are straightforward. The overall design of a coupled dynamical system
is itself a dynamical system, so to combine them, a modeller simply

specifies the desired sets of state quantities and evolution equations
and solves the system as usual. From this point of view, BioCro II in
conjunction with Yggdrasil could be a streamlined way to combine
models across different languages and scales. Any model that can be
expressed as one or more BioCro II modules, possibly using Yggdrasil
to communicate with languages other than C/C++, could then be inte-
grated into a larger crop growth simulation that operates across scales
and disciplines with a minimum of code duplication.

There will still be code to write, but it will mostly be rote code.
This process still leaves considerable work, such as identifying which
equations should be coupled and which variable names in one model
match the names in a second model, but thinking about the appropri-
ate equations and quantities is the more enjoyable part of modelling.
By settling on a common design, the community can reduce time spent
writing the mundane parts of code and focus on the scientific parts.

Dynamical models are nearly ubiquitous as a tool to write mod-
els, and although many plant biology studies also use them, it is still
commonplace to find designs that do not cleanly separate the logic
of specifying models from that of solving them. BioCro II provides a
way to use this common structure in a way that is modular, flexible and
computationally efficient, with minimal overhead required to write the
code itself. We hope that researchers find this useful for writing their
own models, and that the models provided can be used by the com-
munity as is or coupled to other models.

S U P P O RT I N G I N F O R M AT I O N
The following additional information is available in the online version
of this article—
Supplemental_information.pdf, which contains sections S1 (A note on
the term ‘state’ as used in BioCro), S2 (Choosing an optimal value for
αRUE), S3 (Performance comparison between BioCro and BioCro II)
and S4 (Comparison between BioCro II and other general purpose
software for solving dynamical systems)
A_practical_guide_to_biocro.pdf, which contains basic examples of
running a simulation and calculating a response curve using BioCro,
along with R essentials and other information helpful to new BioCro
users; this document is included with the BioCro R package as a
vignette, ensuring that an up-to-date version is always available to users
Quantitative_model_comparison.pdf, which contains annotated R code
used to perform the analysis in Section 3 of the main manuscript; this
document is also included with the BioCro R package as a vignette,
ensuring that an up-to-date version is always available to users
Quantitative_model_comparison.R, which is an R script for reproduc-
ing the analysis in Section 3 of the main manuscript; this script is auto-
matically generated when the associated vignette is built
Biocro.tar.gz, which contains the compressed source code. The pack-
age can be installed by uncompressing the file and running ‘R CMD
INSTALL biocro’ from the directory that contains the extracted direc-
tory. The R environment is required. Rtools is required on Windows,
Xcode is required on Mac, gcc or clang is required on Linux.

A C K N O W L E D G E M E N T S
Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors
and do not necessarily reflect the views of the US Department

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

BioCro II • 11

of Agriculture (USDA). Mention of trade names or com-
mercial products in this publication is solely for the purpose
of providing specific information and does not imply recom-
mendation or endorsement by the USDA. USDA is an equal
opportunity provider and employer.

S O U R C E S O F F U N D I N G
This work was supported, in whole or in part, by the Realizing
Increased Photosynthetic Efficiency (RIPE) project, that is
funded by the Bill & Melinda Gates Foundation, Foundation
for Food & Agriculture Research (FFAR) and the UK Foreign,
Commonwealth and Development Office (FCDO) under grant
number OPP1172157. Under the grant conditions of the Bill &
Melinda Gates Foundation, a Creative Commons Attribution 4.0
Generic License has already been assigned to the Author Accepted
Manuscript version that might arise from this submission. The work
was also supported by FFAR under award number 602757. The con-
tent of this publication is solely the responsibility of the authors and
does not necessarily represent the official views of the Foundation
for Food & Agriculture Research.

C O N T R I B U T I O N S B Y AU T H O R S
All authors contributed to conceptualization of models or the design
for the new framework. J.M.M., E.B.L. and S.R. implemented source
code changes for the new framework. J.M.M, E.B.L, S.R, D.J and
M.L.M modified models for use with the new framework. E.B.L. and
S.R. wrote source code documentation. E.B.L., J.M.M. and M.L.M
drafted the manuscript, and all authors revised the manuscript.

C O N F L I C T O F I N T E R E S T
None declared.

L I T E R AT U R E C I T E D

Arkebauer TJ, Weiss A, Sinclair TR, Blum A. 1994. In defense of radia-
tion use efficiency: a response to Demetriades-Shah et al. (1992).
Agricultural and Forest Meteorology 68:221–227.

Augustine JA, DeLuisi JJ, Long CN. 2000. SURFRAD—a national sur-
face radiation budget network for atmospheric research. Bulletin of
the American Meteorological Society 81:2341–2358.

Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal
conductance and its contribution to the control of photosynthe-
sis under different environmental conditions. In: Biggins J, ed.
Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth
International Congress on Photosynthesis Providence, Rhode Island,
USA, 10–15 August 1986. Dordrecht, The Netherlands: Springer
Netherlands, 221–224.

Barbi D, Wieters N, Gierz P, Andrés-Martínez M, Ural D, Chegini F,
Khosravi S, Cristini L. 2021. ESM-Tools version 5.0: a modular
infrastructure for stand-alone and coupled Earth system modelling
(ESM). Geoscientific Model Development 14:4051.

Boost C++ Libraries, version 1.71.0 [WWW document]. 2019.
https://www.boost.org/users/history/version_1_71_0.html (1
December 2019).

Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA,
Lodge DM, Pascual M, Pielke R Jr, Pizer W, Pringle C, Reid WV,

Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D. 2001.
Ecological forecasts: an emerging imperative. Science 293:657–660.

Demetriades-Shah TH, Fuchs M, Kanemasu ET, Flitcroft I. 1992. A
note of caution concerning the relationship between cumulated
intercepted solar radiation and crop growth. Agricultural and Forest
Meteorology 58:193–207.

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model
of photosynthetic CO2 assimilation in leaves of C3 species. Planta
149:78–90.

Flannery BP, Press WH, Teukolsky SA, Vetterling W. 1992. Numerical
recipes in C. New York: Press Syndicate of the University of
Cambridge.

Humphries SW, Long SP. 1995. WIMOVAC: a software package for
modelling the dynamics of plant leaf and canopy photosynthesis.
Computer Applications in the Biosciences 11:361–371.

Illinois State Water Survey. [WWW document]. 2015. Water and
atmospheric resources monitoring program. Illinois Climate
Network. doi:10.13012/J8MW2F2Q (7 September 2021).

Jaiswal D, De Souza AP, Larsen S, LeBauer DS, Miguez FE, Sparovek G,
Bollero G, Buckeridge MS, Long SP. 2017. Brazilian sugarcane
ethanol as an expandable green alternative to crude oil use. Nature
Climate Change 7:788–792.

Kalnay E, Lord SJ, McPherson RD. 1998. Maturity of operational
numerical weather prediction: medium range. Bulletin of the
American Meteorological Society 79:2753–2770.

Lafolie F, Cousin I, Marron PA, Mollier A, Pot V, Moitrier N,
Moitrier N, Nouguier C. 2014. The «VSOIL» modeling platform.
Revue Forestière Française 66:187.

Lang M. 2019. Yggdrasil: a Python package for integrating computa-
tional models across languages and scales. In Silico Plants 1:diz001;
doi:10.1093/insilicoplants/diz001.

Larsen S, Jaiswal D, Bentsen NS, Wang D, Long SP. 2016. Comparing
predicted yield and yield stability of willow and Miscanthus across
Denmark. GCB Bioenergy 8:1061.

LeBauer DS, Wang D, Richter KT, Davidson CC, Dietze MC. 2013.
Facilitating feedbacks between field measurements and ecosystem
models. Ecological Monographs 83:133–154.

Lochocki EB, McGrath JM. 2021. Integrating oscillator-based cir-
cadian clocks with crop growth simulations. In Silico Plants
3:diab016; doi:10.1093/insilicoplants/diab016.

Marin FR, Ribeiro RV, Marchiori PER. 2014. How can crop mode-
ling and plant physiology help to understand the plant responses
to climate change? A case study with sugarcane. Theoretical and
Experimental Plant Physiology 26:49–63.

Marshall-Colon A, Long SP, Allen DK, Allen G, Beard DA, Benes B,
von Caemmerer S, Christensen AJ, Cox DJ, Hart JC, Hirst PM,
Kannan K, Katz DS, Lynch JP, Millar AJ, Panneerselvam B,
Price ND, Prusinkiewicz P, Raila D, Shekar RG, Shrivastava S,
Shukla D, Srinivasan V, Stitt M, Turk MJ, Voit EO, Wang Y, Yin X,
Zhu XG. 2017. Crops in silico: generating virtual crops using an
integrative and multi-scale modeling platform. Frontiers in Plant
Science 8:786.

Matthews ML, Marshall-Colón A, McGrath JM, Lochocki EB,
Long SP. 2021. Soybean-BioCro: a semi-mechanistic model of
soybean growth. In Silico Plants 4(1):diab032; doi:10.1093/
insilicoplants/diab032.

Menon S, Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM,
Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D,

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

https://www.boost.org/users/history/version_1_71_0.html
https://doi.org/10.13012/J8MW2F2Q
https://doi.org/10.1093/insilicoplants/diz001
https://doi.org/10.1093/insilicoplants/diab016
https://doi.org/10.1093/insilicoplants/diab032
https://doi.org/10.1093/insilicoplants/diab032

12 • Lochocki et al.

Lohmann U, Ramachandran S, Leite da Silva Dias P, Wofsy SC,
Zhang X. 2007. Couplings between changes in the climate system
and biogeochemistry (no. LBNL-464E). Berkeley, CA: Lawrence
Berkeley National Lab. (LBNL).

Miguez FE, Maughan M, Bollero GA, Long SP. 2012. Modeling spa-
tial and dynamic variation in growth, yield, and yield stability of
the bioenergy crops Miscanthus × giganteus and Panicum virgatum
across the conterminous United States. GCB Bioenergy 4:509–520.

Miguez FE, Zhu X, Humphries S, Bollero GA, Long SP. 2009. A semi-
mechanistic model predicting the growth and production of the
bioenergy crop Miscanthus × giganteus: description, parameteriza-
tion and validation. GCB Bioenergy 1:282–296.

NOAA. 2021. Global Monitoring Laboratory—carbon cycle green-
house gases [WWW document]. https://gml.noaa.gov/ccgg/
trends/data.html (7 April 2021).

Postma JA, Kuppe C, Owen MR, Mellor N, Griffiths M, Bennett MJ,
Lynch JP, Watt M. 2017. OpenSimRoot: widening the scope
and application of root architectural models. The New Phytologist
215:1274–1286.

Prathibha SR, Hongal A, Jyothi MP. 2017. IOT based monitoring sys-
tem in smart agriculture. In: Guerrero JE, ed. 2017 International
Conference on Recent Advances in Electronics and Communication
Technology (ICRAECT). Presented at the 2017 International
Conference on Recent Advances in Electronics and Communication
Technology (ICRAECT). Piscataway, NJ: The Institute of Electrical
and Electronics Engineers, 81–84.

Rogers A, Humphries SW. 2000. A mechanistic evaluation of pho-
tosynthetic acclimation at elevated CO2. Global Change Biology
6:1005.

Sinclair TR, Muchow RC. 1999. Radiation use efficiency. In:
Sparks DL, ed. Advances in agronomy. San Diego, CA: Academic
Press, 215–265.

Song Q, Chen D, Long SP, Zhu XG. 2017. A user-friendly means to
scale from the biochemistry of photosynthesis to whole crop
canopies and production in time and space—development of Java
WIMOVAC. Plant, Cell & Environment 40:51–55.

Teweles S, Wobus HB. 1954. Verification of prognostic charts. Bulletin
of the American Meteorological Society 35:455–463.

Thornley JHM. 1972. A model to describe the partitioning of pho-
tosynthate during vegetative plant growth. Annals of Botany
36:419–430.

Vasisht D, Kapetanovic Z, Won J, Jin X, Chandra R, Sinha S, Kapoor A,
Sudarshan M, Stratman S. 2017. FarmBeats: an IoT platform for
data-driven agriculture. In: Akella A, Howell J, eds. 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17). Boston, MA: USENIX Association, 515–529.

Wang D, Jaiswal D, LeBauer DS, Wertin TM, Bollero GA, Leakey AD,
Long SP. 2015. A physiological and biophysical model of coppice
willow (Salix spp.) production yields for the contiguous USA in
current and future climate scenarios. Plant, Cell & Environment
38:1850–1865.

Wittig VE, Bernacchi CJ, Zhu XG, Calfapietra C, Ceulemans R,
Deangelis P, Gielen B, Miglietta F, Morgan PB, Long SP. 2005.
Gross primary production is stimulated for three Populus species
grown under free-air CO2 enrichment from planting through can-
opy closure. Global Change Biology 11:644–656.

Zhu XG, Wang Y, Ort DR, Long SP. 2013. e-Photosynthesis: a compre-
hensive dynamic mechanistic model of C3 photosynthesis: from light
capture to sucrose synthesis. Plant, Cell & Environment 36:1711–1727.

A P P E N D I X 1 . A S H O R T I N T R O D U C T I O N TO
T H E S Y N TA X O F B I O C R O I I

To run models built from modules already written in BioCro, one
does not need to understand many of the code details. The essen-
tial parts are understanding how to create the objects in R that are
passed to the run_biocro function. Initial values and parameters
are given as list objects as follows.
parameters = list(
 alpha_rue = 0.07, # kg / mol
 SLA = 25, # m^2 / kg
 C_conv = 0.03, # kg / mol
 f_leaf = 0.2, # kg / kg
 f_root = 0.8, # kg / kg
 timestep = 1 # s
)
initial_values = list(
 Leaf = 1, # kg
 Root = 1 # kg
)
The drivers are given as a data frame, which must include the

times at which their values are defined. Although drivers are typi-
cally derived from experimental measurements rather than closed-
form equations, for simplicity the drivers for the example model are
defined as follows:

Q = function(time) sin(time/3600/12 * pi)
* 2000e-6 # mol / m^2 / s
times = 0:(3600 * 12) # seconds
light_intensity = data.frame(time = times,
Q = Q(times))

The final two arguments of run_biocro accept the names of
sets of equations that are already written. A library of sets of equa-
tions is provided with BioCro II. Each set is called a module, and
modules come in two types, direct and differential, that can calcu-
late either instantaneous values or time rates of change, respectively
(see Section 4 of the main text). The example model in Section 1.1
of the main text has one of each type of module. If one wants to
use multiple modules in a model, the names of the same type are
grouped into separate lists. For example, if there are direct modules
‘A’ and ‘B’, they would be passed as list(‘A’, ‘B’).

To add new models, one must write a module. Modules are writ-
ten in C++, specifying the input and output variables of the module,
as well as the equations. Due to language requirements, the input
and output variables are repeated in several places. There are plans
to handle the repetition better. The full source code for example_
model_carbon_gain is as follows.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

https://gml.noaa.gov/ccgg/trends/data.html
https://gml.noaa.gov/ccgg/trends/data.html

BioCro II • 13

#ifndef EXAMPLE_MODEL_MASS_GAIN_H
#define EXAMPLE_MODEL_MASS_GAIN_H

#include "../modules.h"
#include "../state_map.h"

/**
 * @class example_model_mass_gain
 *
 * @brief An example for the BioCro II manuscript
 *
 * ### Model overview
 *
 * Model mass gain as a linear function of other quantities.
 *
 * It is not meant to be biologically realistic.
 *
 */
class example_model_mass_gain : public direct_module
{
 public:
 example_model_mass_gain(
 state_map const& input_quantities,
 state_map* output_quantities)
 : // Define basic module properties by passing its name to its
parent class
 direct_module{"example_model_mass_grain"},

 // Get pointers to input quantities
 Q{get_input(input_quantities, "Q")},
 alpha_rue{get_input(input_quantities, "alpha_rue")},
 SLA{get_input(input_quantities, "SLA")},
 C_conv{get_input(input_quantities, "C_conv")},
 Leaf{get_input(input_quantities, "Leaf")},

 // Get pointers to output quantities
 mass_gain_op{get_op(output_quantities, "mass_gain")}
 {
 }
 static string_vector get_inputs();
 static string_vector get_outputs();

 private:
 // References to input quantities
 double const& Q;
 double const& alpha_rue;
 double const& SLA;
 double const& C_conv;
 double const& Leaf;

 // Pointers to output quantities
 double* mass_gain_op;

 // Main operation
 void do_operation() const;
};

string_vector example_model_mass_gain::get_inputs()
{
 return {
 "Q", // mol / m^2 / s
 "alpha_rue", // mol / mol
 "SLA", // m^2 / kg
 "C_conv", // kg / mol
 "Leaf" // kg
 };
}

string_vector example_model_mass_gain::get_outputs()
{
 return {
 "mass_gain" // kg / s
 };
}

void example_model_mass_gain::do_operation() const
{
 double const assimilation = Q * alpha_rue;
 double const mass_gain = assimilation * Leaf * SLA * C_conv;

 update(mass_gain_op, mass_gain);
}

#endif

The code declares a new class example_model_mass_
gain that inherits the direct_module class. The construc-
tor accepts two collections of quantities and their values. These are
represented as state maps, a collection of key-value pairs of quantity
names and values. Within the constructor, references to the items
in the map are stored within the class, which improves speed. The
input and output quantities are listed in the get_inputs() and
get_output() functions. These are used to validate the model
when assembling multiple modules. Lastly, the equations are written
in the do_operation() function. Calculations are local to the
function, so update(quantity, local_value) is used
to update values in the model’s state map.

For more in-depth information about using BioCro II, see A
Practical Guide to BioCro in the Supporting Information and the
up-to-date documentation available online (https://ebimodeling.
github.io/biocro-documentation/).

A P P E N D I X 2 . B I O C R O ’ S M E T H O D F O R
S O LV I N G D Y N A M I C A L S Y S T E M S

As described in the text, each argument of the run_biocro
R function specifies one or more parts of a dynamical system.
Assuming the set of equations is solvable, these arguments are suf-
ficient to define and solve the dynamical system. To understand how,
note that for given values of t and Xdifferential, it is possible to determine
the instantaneous derivatives for the quantities in Xdifferential as follows:

 1. The values of the quantities in Xparameter are given in the original
input.

 2. The values of the quantities in Xdriver are determined from the
current value of t.

 3. The values of the quantities in Xdirect are determined
from the values of t and the other state quantities
(Xparameter

⋃
Xdriver

⋃
Xdif ferential) using the equations specified

by the direct modules.
 4. The derivatives of the quantities in Xdifferential are

determined from the values of t and the state quantities
(Xparameter

⋃
Xdriver

⋃
Xdif ferential

⋃
Xdirect) using the equations

specified by the differential modules.

This process determines a function g(t, Xdifferential) which calculates
dXdifferential/dt. In turn, this function can be passed to a numerical ODE
solver, which can use it to determine the time evolution of Xdifferential.
Finally, the time evolution of the state as a whole can be determined
using steps 1–3 above. This process—arranging the equations in the
order described here to create this function, passing the function
to a numerical ODE solver and determining the state at all desired
times—is a major part of what the BioCro II framework does.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diac003/6527687 by guest on 04 April 2023

https://ebimodeling.github.io/biocro-documentation/
https://ebimodeling.github.io/biocro-documentation/

	Introduction
	An illustrative example

	OVERVIEW OF BIOCRO II ORGANIZATION AND FUNCTIONALITY
	QUANTITATIVE COMPARISON BETWEEN TWO PHOTOSYNTHESIS MODELS
	Soybean simulation details
	RUE versus FvCB photosynthesis models in soybean for a single year
	Sensitivity analysis of the RUE and FvCB photosynthesis models
	RUE versus FvCB photosynthesis models in soybean for multiple years

	BIOCRO II AS A CROSS-PLATFORM REPRESENTATION OF A DYNAMICAL SYSTEM
	DISCUSSION AND CONCLUSIONS
	SUPPORTING INFORMATION

