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Summary

� Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop pro-

ductivity under favorable conditions.
� To achieve a more mechanistic understanding of CAM plant productivity, a biochemical

model of diel metabolism was developed and integrated with 3-D shoot morphology to pre-

dict the energetics of light interception and photosynthetic carbon assimilation.
� Using Agave tequilana as an example, this biochemical model faithfully simulated the four

diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D

form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light

microclimate across all photosynthetic surfaces. Integration with the biochemical model

thereby enabled the simulation of plant and stand carbon uptake over daily and annual

courses.
� The theoretical maximum energy conversion efficiency of Agave spp. is calculated at

0.045–0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and bio-

chemical and anatomical limitations, reduced this to 0.0069, or 15.6Mg ha�1 yr�1 dry mass

annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the

productivity of many C3 crops, demonstrating the potential of CAM plants in climates where

little else may be grown while indicating strategies that could raise their productivity.

Introduction

The day–night cycle of crassulacean acid metabolism (CAM) is
divided conventionally into four phases (Osmond, 1978). Phase
I occurs at night when stomatal conductance is high (Males &
Griffiths, 2017), and CO2 is fixed (as bicarbonate) by phosphoe-
nolpyruvate carboxylase (PEPC) into oxaloacetate (OAA) using
PEP generated from storage carbohydrate (Borland et al., 2016).
The OAA is then reduced by malate dehydrogenase (MDH) to
malate, which is transported into the vacuole and accumulates as
malic acid, causing the distinctive nocturnal acidification of the
photosynthetic tissues (Winter & Smith, 2022). Phase II occurs
in the early morning and represents the transition from nighttime
carbon fixation by PEPC to daytime CO2 assimilation via
Rubisco. For most of the light period, during phase III, the sto-
mata are closed while malate is released from the vacuole (Smith
et al., 1996; Ceusters et al., 2021) and is decarboxylated in the
cytoplasm via either NAD(P)-malic enzyme (NAD(P)-ME) or
PEP carboxykinase (PEPCK), releasing CO2 for assimilation by
Rubisco. In this phase, intercellular CO2 concentrations are dra-
matically elevated, typically exceeding 0.1% (v/v) but reaching

> 2% (v/v) at maximum (Cockburn et al., 1979; Spalding
et al., 1979). This should be sufficient to competitively inhibit
photorespiratory oxygenation. Stomatal opening may then occur
in phase IV in the late afternoon once the stored malate has been
exhausted, environmental conditions permitting (e.g. sufficient
water availability). In this phase, CO2 from the atmosphere is
assimilated directly by Rubisco, as in C3 photosynthesis.

Because CAM plants conduct most of their carbon fixation at
night, when the ambient temperature is lower and rates of poten-
tial evapotranspiration are reduced, they can achieve water sav-
ings of 20–80% compared with C3 or C4 plants (Nobel, 1991;
Borland et al., 2009; Davis et al., 2014). The kinetic properties
of PEPC allow CAM plants to maintain a low CO2 compensa-
tion point in the dark (Kluge & Ting, 1978), which further con-
tributes to an elevated water-use efficiency for a given stomatal
aperture, as in C4 plants. For these reasons, CAM plants main-
tain a strong water-use efficiency advantage over C3 and C4

plants in environments with large diel temperature ranges and
high daytime water vapor pressure deficits (VPD; Nobel, 1988;
Davis et al., 2014). This is reflected in the high proportion of
CAM species in the floras of hot semiarid regions (Winter, 1985;

2180 New Phytologist (2023) 239: 2180–2196 � 2023 The Authors
New Phytologist � 2023 New Phytologist Foundationwww.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Research

https://orcid.org/0000-0002-6951-2835
https://orcid.org/0000-0002-6951-2835
https://orcid.org/0000-0001-9188-0258
https://orcid.org/0000-0001-9188-0258
https://orcid.org/0000-0002-4435-130X
https://orcid.org/0000-0002-4435-130X
https://orcid.org/0000-0002-8501-7164
https://orcid.org/0000-0002-8501-7164
mailto:slong@illinois.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.19128&domain=pdf&date_stamp=2023-08-03


Borland et al., 2009; Ogburn & Edwards, 2010). Such regions
account for one-third of global land area and are generally
unsuited to C3 and C4 crop production (Van Velthuizen, 2007),
so CAM crops such as Agave, Opuntia and Aloe could provide a
viable alternative land use without irrigation (Cushman
et al., 2015; Yang et al., 2015; Davis et al., 2019). Furthermore,
engineering the CAM pathway into non-CAM crops has been
proposed as an approach for improving WUE whilst maintaining
high productivity (Borland et al., 2014; Lim et al., 2019; Schiller
& Bräutigam, 2021).

Understanding key mechanistic elements of CAM photosynth-
esis is essential to guide bioengineering and targeted breeding
improvements of the productivity of these crops (Yang
et al., 2015; Abraham et al., 2016; Shameer et al., 2018; Burgos
et al., 2022). Mathematical modeling has proved valuable in
identifying targets for the bioengineering of increased efficiency
and sustainability of C3 and C4 crops (Zhu et al., 2004, 2007;
Wang et al., 2014b, 2021; Kromdijk et al., 2016; Köhler
et al., 2017; De Souza et al., 2022), but this approach has been
less explored in CAM plants. In fact, due to the time dependence
of CAM photosynthesis, kinetic modeling was used in CAM
before its application to C3 and C4 photosynthesis (reviewed by
Morgan & Rhodes, 2002). Comins & Farquhar (1982) predicted
the relationship between nocturnal stomatal opening, carbon
gain and water loss in CAM plants. Other early kinetic models
focused on simulating the daytime vs nighttime phenomena of
CAM, such as the diel rhythms of CO2 uptake and malic acid
concentration (Nungesser et al., 1984; Lüttge & Beck, 1992;
Blasius et al., 1997, 1998, 1999; Neff et al., 1998; Lüttge, 2000),
highlighting malate transport across the tonoplast as a possible
regulator of the day/night rhythm of CAM. Owen & Grif-
fiths (2013) developed a system dynamics model of CAM using
key biophysical and biochemical parameters related to CO2

uptake and assimilation, which successfully captured the cardinal
features of the diel CAM rhythm. Flux balance models have also
been used to predict fluxes in the complete metabolic network of
CAM cells with the objective of maximizing phloem loading, as a
proxy for growth (Cheung et al., 2014; Shameer et al., 2018;
Töpfer et al., 2020). However, none of these models has so far
incorporated temperature and light variations or integrated these
into the unusual 3-dimensional canopy structures of CAM crops.
This is needed to deliver a more complete framework able to pre-
dict crop CO2 assimilation dynamics, long-term productivity
and targets for improvement.

Nobel (1984) developed the environmental productivity
index (EPI) as a first-order approximation of the effect of
environmental factors on net CO2 uptake of CAM plants, pri-
marily to explain the relative effects of light, temperature and
water availability on plant growth. This approach has been
used to predict the productivity of a number of CAM species
under different climates and regions (Nobel, 2000; Owen &
Griffiths, 2014; Niechayev et al., 2019a). Bartlett et al. (2014)
combined the Farquhar photosynthetic model (Farquhar
et al., 1980) with a soil–plant–atmospheric continuum
(APAC) model to simulate the carbon and water fluxes of
CAM plants, which was later applied to predict the global

productivity of Opuntia ficus-indica and Agave tequilana (Hart-
zell et al., 2018, 2021). However, these models did not
include the effects of canopy structure on light interception
and carbon assimilation.

Previous dynamic models of CAM productivity have focused
on light-saturated photosynthesis, neglecting the effect of light
limitation. Although CAM plants grow in some of the highest
light intensities on Earth, their unusual shoot morphology results
in significant shading. For example, the flattened cladodes of
Opuntia spp. and thick leaves of Agave spp. have two photosyn-
thetic surfaces separated by a central succulent water-storage tis-
sue. While the upper surface of an Agave leaf may be exposed to
sunlight for much of the day, the lower surface can be shaded
from direct sunlight for long periods. Furthermore, as successive
leaves of Agave mature, the older leaves at the bottom of the
rosette become strongly shaded, particularly toward the broad
leaf base (Woodhouse et al., 1980; Nobel & Garcı́a de
Cortázar, 1987). Studies on bromeliad leaves have also shown
that carbon assimilation capacity in monocot leaves can exhibit a
gradient from base to tip (Popp et al., 2003; Freschi et al., 2010;
Chaves et al., 2015). Although CO2 uptake from the atmosphere
may be largely restricted to the nighttime in CAM plants, light
interception during the daytime is crucial. This is because it
affects not only the rate of concurrent photosynthesis but also the
amount of storage carbohydrate that can be synthesized to supply
PEP in the following dark period as the substrate for CO2 cap-
ture. Consequently, a productivity model for CAM must take
account of potential light limitation by dynamically mapping
light on the photosynthetic surfaces of the plant over the course
of the day and at different growth stages.

Previous models for C3 and C4 crops captured light dynamics
by predicting sunlit and shaded canopy portions (e.g. De Pury
& Farquhar, 1997). However, this approach is not suitable for
most CAM crops because of their canopy architecture, strongly
nonrandom leaf distribution and the existence of large gaps
between plants in stands of CAM plants through much of the
growth cycle. A solution is to capture the 3-D form of the plant
and use ray tracing to provide predictions of the dynamic light
environment, an approach first applied to Agave by Nobel &
Garcı́a de Cortázar (1987). Using rice as an example, Song
et al. (2013) developed a 3-D canopy reconstruction algorithm,
together with a ray-tracing algorithm to predict the light envir-
onments at each photosynthetic surface in a crop canopy. This
approach allows the development of a systems model of whole-
plant CAM photosynthesis despite complex forms by combin-
ing a shoot canopy micrometeorological model with a dynamic
biochemical model.

Here, an integrated model of crop productivity for Agave
tequilana F.A.C.Weber was developed. This species was
selected because of the extensive field data, including produc-
tivity measurements. The genus Agave (family Asparagaceae;
subfamily Agavoideae) forms a distinctive clade of leaf-
succulent CAM plants distributed across the deserts and semi-
deserts of the Americas (Gentry, 1982; Nobel, 1988). Many
species of Agave have been cultivated for centuries for bev-
erages, medicines and fiber (Nobel, 1988; Stewart, 2015;
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Pérez-Pimienta et al., 2017). Recent productivity studies and
life cycle assessments have emphasized their high yield poten-
tial (Yan et al., 2011, 2020; Davis et al., 2014, 2017; Owen
et al., 2016). With increasing interest in using marginal land
for bioenergy and bioproducts, and possibly for food produc-
tion (Pérez-Pimienta et al., 2017; Nabhan et al., 2022), the
ability to predict potential productivity at different locations
will be needed. In particular, bioenergy with carbon capture
and geological storage (BECCS) has been highlighted as one of
the top options for the removal of atmospheric CO2

(IPCC, 2023). A challenge is producing biomass whilst avoid-
ing conflict with food and feed production, which CAM bio-
mass crops planted in degraded semidesert regions would
address. CAM biomass crops in semideserts could have great
value for BECCS, given that these climatic regions often coin-
cide with areas suited to geologic sequestration of CO2, both
in the US and world-wide (Kearns et al., 2017).

Here, a dynamic metabolic model of CAM photosynthesis is
integrated into a 3-dimensional shoot architecture model, allow-
ing the prediction of light interception and photosynthetic car-
bon assimilation in time and space across the entire growth cycle.
Agave tequilana was chosen as an example since it is a well-
studied CAM crop, providing significant parameterization, agro-
nomic and validation data (Nobel & Valenzuela, 1987; Yan
et al., 2011; Davis et al., 2019). The current study asks the fol-
lowing questions: (1) How efficient is the crop under typical agr-
onomy over a growth cycle when compared to the maximum
predicted assimilation via the CAM pathway? (2) To what extent
is CO2 assimilation light-limited when plant architecture, spa-
cing and sun-angle changes are considered? (3) How do biochem-
ical factors and shoot architecture affect theoretical maximum
productivity over an A. tequilana growth cycle? Although consid-
ered here specifically for A. tequilana, the approach developed
would be applicable to any CAM plant, where 3-D structure has
been captured.

Materials and Methods

Development of the whole-plant CAM photosynthesis
model

The model takes account of the actual structure and growth of
crop stands of Agave tequilana F.A.C.Weber and consists of three
components: (1) canopy architectural model with ray tracing to
determine dynamic light interception; (2) CAM metabolic
model; and (3) integration of the metabolic and architectural
models. Symbols and abbreviations are summarized in Table 1.

3-D plant model and dynamic light interception of its leaf
surfaces using forward ray tracing

The 3-D reconstruction algorithm of Song et al. (2013) was
adapted to A. tequilana, based on the measurements of Nobel &
Valenzuela (1987). The angle between overlying leaves was
assumed equal to the difference between the angle of the lowest
and the vertical, divided by the number of overlying leaves

(Supporting Information Methods S1: Eqn MS1.10). Leaves are
formed in a whorl, and each successive leaf was assumed to be
oriented at 137.5° (Nobel, 1988) beyond its predecessor to mini-
mize overlap (Methods S1: Eqn MS1.11).

Adaxial and abaxial surfaces are separated by a thick layer of
nonphotosynthetic water-storage tissue (Smith & Nobel, 1986).
They were therefore treated as two independent photosynthetic
surfaces; no light was assumed to penetrate from one surface to
the other. Both surfaces of every leaf were divided into c. 80 trian-
gles, giving high spatial resolution while making the calculations
tractable in computational time. Hourly lighting of each facet
over the course of the day, taking account of solar angle, shading
and reflection within the plant, was simulated by ray tracing, as
described previously (Song et al., 2013; Wang et al., 2017; Meth-
ods S1: Eqns MS1.1–1.9).

Table 1 Definition of symbols and abbreviations.

Abbreviations Unit Description

A Dimensionless Leaf absorbance
Ac μmol m�2 s�1 Net rate of canopy photosynthetic CO2

uptake
Ai_ad μmol m�2 s�1 Net rate of photosynthetic CO2 uptake

by a facet on the adaxial surface
Ai_ab μmol m�2 s�1 Net rate of photosynthetic CO2 uptake

by a facet on the abaxial surface
Ca Pa Atmospheric CO2 partial pressure
Ci Pa Intercellular CO2 partial pressure
F Dimensionless Proportion of absorbed light that does

not reach the photosystems
gs mol m�2 s�1 Stomatal conductance
gs_o mol m�2 s�1 Hypothetical maximum stomatal

conductance
HCO3

� mM Bicarbonate
I2 μmol m�2 s�1 Photosynthetic photon flux absorbed by

photosystem II
It μmol m�2 s�1 Total photosynthetic photon flux
J μmol m�2 s�1 Electron transport rate
Jmax μmol m�2 s�1 Maximal electron transport rate
Malt mM Total concentration of malate, including

mal2�, Hmal� and undissociated malic
acid

OAA mM Oxaloacetate
PEP mM Phosphoenolpyruvate
PPFD μmol m�2 s�1 Photosynthetic photon flux density
Sground m2 Ground area occupied by the simulated

canopy
Si m2 Surface area of a facet
Tleaf °C Leaf temperature
Tampl °C Average daily temperature amplitude
Tmean °C Mean daily temperature
Vmax μmol m�2 s�1 Maximum reaction velocity
Wa Pa Ambient atmospheric water vapor

pressure
Wi Pa Intercellular water vapor pressure
Θ Dimensionless

(0–1)
An empirical curvature factor of the
response of net CO2 uptake to PPFD

εi Dimensionless
(0–1)

Efficiency of photosynthetically active
light interception

εt Dimensionless
(0–1)

Energy conversion efficiency from solar
energy to stored chemical energy
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Development of a metabolic model for CAM
photosynthesis

Following the procedures and principles of earlier models of C3

and C4 photosynthesis (Zhu et al., 2007; Wang et al., 2014a,b),
CAM is described here by a system of ordinary differential equa-
tions (ODEs). Each ODE calculates the metabolite concentration
dynamics (d[M]/dt) by numerical integration of the differences
between rates of generation (vin) and consumption (vout):

d M½ �
dt

¼ v in�voutð Þ 1

Vol
Eqn 1

where Vol is the volume of the compartment containing the
metabolite per unit leaf surface area. The major reactions and
compartmentation modeled, as shown in Fig. 1, are briefly
described below. The complete equations and parameters are
given in Supporting Information Methods S2.

Michaelis–Menten equations describe the kinetics of each
enzyme-catalyzed step as outlined in previous dynamic models of
photosynthetic carbon metabolism (Zhu et al., 2007; Wang
et al., 2014b; Fig. 1). The detailed kinetic model is for the nicoti-
namide adenine dinucleotide phosphate (NADP)-ME-type
CAM pathway, since NADP-ME is the predominant decarboxy-
lation enzyme in Agave spp. (Dittrich, 1976; Osmond, 1978).
Kinetic constants for only a few CAM enzymes were available,
notably for phosphoenolpyruvate carboxylase (PEPC) and
NADP-ME (Saitou et al., 1992; Nimmo, 2000). For other

enzymes, constants from C4 plants were substituted (Methods
S2: Tables MS2.7–2.8).

Carbon metabolism during the night At night (phase I,
Fig. 1), the carbohydrate reserve accumulated during the day
generates PEP via glycolysis. In Agave, the storage carbohydrate
is a mixture of soluble sugars, fructans and starch/glucan (Abra-
ham et al., 2016), but for simplicity it is treated here either as
solely starch or soluble hexose (Figs S1, S2, respectively). Thus,
1 glucose (C6) equivalent generates 2 PEP together with 2
NADH, which are quantitatively consumed in the subsequent
MDH reaction that synthesizes malate. ATP drives the accumu-
lation of malic acid in the vacuole, as substrate for the tonoplast
V-ATPase. The hydrolysis of one ATP can pump 2 H+ across
the tonoplast with one malate2� following passively to balance
charge (Smith et al., 1996; Winter & Smith, 2022). Half of the
ATP required by the V-ATPase can be supplied by substrate-
level phosphorylation and the remainder by mitochondrial oxi-
dative phosphorylation (Lüttge et al., 1981; Shameer
et al., 2018). The dark respiration rate was set as
1 μmol m�2 s�1 based on measured O2 consumption across a
range of C3 species (Davey et al., 2004), which is consistent
with rates observed for CAM plants (Lüttge et al., 1981; Lüttge
& Ball, 1987).

The relationship between total vacuolar malate ([Malt]vacu),
that is, the combined concentration of malate and undissociated
malic acid, and vacuolar pH (pHvacu) was assumed to follow the
relationship measured in the CAM plant Kalanchoë

Fig. 1 Metabolites and fluxes represented in the crassulacean acid metabolism (CAM) model (Supporting Information Methods S2). Blue arrows indicate
reactions active in the dark; red arrows those active in the day. Daytime malate decarboxylation is shown as catalyzed principally by nicotinamide adenine
dinucleotide phosphate (NADP)-linked malic enzyme (NADP-ME), consistent with enzyme activity data for Agave spp. (Dittrich, 1976). Enzymes: CA, car-
bonic anhydrase; MDH, malate dehydrogenase; ME, malic enzyme; PEPC, phosphoenolpyruvate carboxylase; PPDK, pyruvate, Pi dikinase.
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daigremontiana (Lüttge & Smith, 1984; Methods S2: Eqn
MS2.40). A minimum pH of 3.5 was specified in the model,
such that the rate of malate transport into the vacuole was set at
zero at pH≤ 3.5.

Diel variations of Rubisco and PEPC activities (Methods S2:
MS2.3) were set as in Owen & Griffiths (2013), following
known patterns of light–dark regulation of these enzymes during
CAM (Borland & Griffiths, 1997; Maxwell et al., 1999;
Nimmo, 2000).

Carbon metabolism during the day During the day (predomi-
nantly during phase III, Fig. 1), CO2 is released by decarboxylation
of malate and is reassimilated via Rubisco into the Calvin-Benson-
Bassham (CBB) cycle. The relationship of electron transport rate
(J) to photon flux was described by a nonrectangular hyperbola, as
in predicting C3 and C4 photosynthesis (Ögren & Evans, 1993;
von Caemmerer, 2000; Wang et al., 2014a,b; Methods S2:
MS2.4). J was used to calculate rates of ATP and NADPH synth-
esis in photophosphorylation, to drive the CBB cycle.

Assimilation of 1 CO2 in the CBB cycle (vRubisco) requires 3
ATP and 2 NADPH. Production of 1 PEP via pyruvate, Pi diki-
nase (PPDK; vPPDK) requires 2 ATP (Winter & Smith, 1996).
The rate of ATP concentration change was described as the differ-
ence between the rates of generation (vATP_G) and consumption
(Eqn 2). Decarboxylation of malate (vNADP_ME) generates 1
NADPH, which is included in the differential equation describing
the rate of NADPH concentration change (Eqn 3).

d ATP½ �Chl
dt

¼ vATP_G�2vPPDK�3vRubiscoð Þ∙ 1

VolChl
Eqn 2

d NADPH½ �Chl
dt

¼ vNADPH_G þ vNADP_ME�2vRubiscoð Þ∙ 1

VolChl
Eqn 3

Stomatal conductance, CO2 exchange and transpiration Sto-
matal conductance to CO2 (gs) was assumed to be a function of
the [CO2] and water vapor pressure gradients between the leaf
intercellular air spaces and air surrounding the leaf (Owen &
Griffiths, 2013), paralleling the established phenomenological
models for stomatal conductance of C3 and C4 leaves (Ball &
Berry, 1982; Ball et al., 1987; Collatz et al., 1992):

g s ¼ g s_max∙C g s∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C i

C a

� �2
s

W a

W i
Eqn 4

where gs_max is the hypothetical maximum stomatal conductance
to CO2, C g s is the change factor of stomatal conductance which
varied by the time of day and night (Methods S1: MS1.3), Ci is
the intercellular [CO2], Ca is atmospheric [CO2], Wa is ambient
atmospheric water vapor pressure, and Wi is intercellular water
vapor pressure. It was assumed that leaf temperature was equal to
ambient temperature. Dew point and therefore ambient water
vapor pressure were considered constant over the day–night cycle

based on meteorological records for Tequila, Mexico (Methods
S1: MS1.4). Wi was the saturated water vapor pressure at the
temperature of the leaf (Alduchov & Eskridge, 1996). The rate of
Ci change (dCi/dt) was described as the difference between the
rate of CO2 flowing into the intercellular air space and the rate of
CO2 flowing out (Methods S2: Eqn MS2.44).

Temperature response of metabolic reactions The temperature
responses of enzyme activities (Vmax) and affinity for substrate
(KM) were based on those measured for the same enzymes in C4

species (Boyd et al., 2015; Methods S2: MS2.2). The solubilities
of CO2 and O2 were calculated using Henry’s Law (Methods S2:
Eqns MS2.11, 2.12 define the temperature dependence of the
constants).

Integrated model of A. tequilana canopy photosynthesis

Using the 3-D canopy model and ray-tracing algorithm, hourly
photon flux on each facet of each leaf and each surface was pre-
dicted and a continuous record in time was obtained by linear
interpolation. These predictions together with the diel variation
in temperature (Methods S1: MS1.3) were used to calculate CO2

assimilation, concentrations of CAM pathway intermediates,
malate, storage carbohydrate (C6 equivalents) and vacuolar pH
at each facet. The rate of accumulation of C6 equivalents is
described by Eqn 5. C6 equivalents accumulated during the day
as a result of both assimilation of CO2 via the CBB cycle (1/6
vRubisco_C) and conversion of PEP derived from malate decarbox-
ylation back to starch or sugars via gluconeogenesis (1/2 vPPDK;
Figs 1, S1, S2). At night, C6 equivalents in stored starch, fructan
and soluble sugars are consumed to generate PEP (1/2 vPEPC)
and supply ATP for malate transport into the vacuole (1/27
vPEPC). Dark respiration (Rd) and photorespiration (vRubisco_O)
also convert some C6 equivalents to CO2. Thus:

d C6½ �Cyto
dt

¼ 1

6
vRubisco_C þ 1

2
vPPDK� 1

2
vPEPC� 1

27
vPEPC

�

� 1

6
Rd� 1

12
vRubisco_OÞ∙ 1

VolCyto
Eqn 5

An intrinsic property of the CAM cycle is that PEP generation
at night is limited by the amount of storage carbohydrate accu-
mulated during the previous daytime. A model was run with an
arbitrary starting condition, until a ‘steady-state’ end-of-day
amount of storage carbohydrate ([C6]Cyto) was achieved after sev-
eral diel cycles. This quantity was then used as the starting point
for the simulations presented here (Fig. S3). Photosynthetic pro-
ductivity of each leaf surface, that is, net carbohydrate mass gain,
was calculated for each 24-h period:

Ad ¼ C6½ �Cyto_iþ1� C6½ �Cyto_i
� �

∙VolCyto∙6MWCH2O Eqn 6

where [C6]Cyto_i+1 and [C6]Cyto_i are the C6 concentrations at
dusk of day i+ 1 and day i, respectively. VolCyto converts the unit
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from mM d�1 to mmol m�2, and 6 �MWCH2O is the molecular
weight of hexose (C6).

Canopy net CO2 uptake (Ac) was calculated as:

Ac ¼ ∑ Ad_i_ad � S ið Þ þ∑ Ad_i_ab � S ið Þ
S ground

Eqn 7

where Ad_i_ad and Ad_i_ab are the diel carbohydrate mass gain of
adaxial and abaxial sides of a facet, respectively, Si is the surface
area of a facet, and Sground represents the average ground area per
plant.

Model solving and application

The system of linked ODEs was numerically integrated to obtain
metabolite concentrations via algorithm ode15s (MATLAB,
2017). Light distribution over the surfaces, providing the energy
to drive the CBB, was predicted by ray tracing using FASTTRACER,
coded in C++ (Song et al., 2013).

Which metabolic and architectural parameters most affected
rates of canopy photosynthetic CO2 uptake was determined by
systematic sensitivity analysis. To assess system sensitivity with
respect to net canopy CO2 uptake (Ai), each parameter (pi,
Tables 4, 5) was in sequence decreased by 25% (Δp):

SCp ¼ A0�A1

A0
∙
p

Δp
Eqn 8

The original CO2 uptake rate is A0, and parameters were
sequentially decreased by 25% (Δp) to assess system sensitivity
with respect to net canopy CO2 uptake rate (A1). SCp represents
the fractional change in A per fractional change in p.

Results

Maximum theoretical energy conversion efficiency (εt) of
CAM

The maximum εt of CAM plants was found to range between
0.045 and 0.049, depending on energy cost assumptions and the
decarboxylase and storage carbohydrate used (Table 2; Methods
S3: Table MS3.2; Fig. S4). These values assume that 90% of all
incident photosynthetically active radiation is absorbed and that
energy on reaching the reaction centers is used only in the photo-
chemical reduction of CO2 to storage carbohydrates.

Agave tequilana canopy structure and light interception

Plant architecture of A. tequilana was reconstructed for different
growth stages (Fig. 2). Incident photon flux is predicted to vary
hugely across the photosynthetic surfaces within the plant, as illu-
strated for a 6-yr-old canopy (Fig. 3). On a clear sky day at
10:00 h, the tips of the leaves receive 2000 μmol m�2 s�1, while
the lower surfaces near the leaf base can receive < 1% of this
(Fig. 3g). The upper surface of the lower leaves (for example facet

40.0.15) may see full sunlight transiently but are in shade for most
of the day, while the lower surface is in shade throughout (Fig. 3e).

The daily efficiency of light interception (εi) averaged over the
first 3 yr was just 0.083, but then rose to 0.73 by Year 7. Over
the full 8-yr growing cycle, interception efficiency averaged 0.41
(Fig. 4a). As a result, εt, the product of εi and εc, is lowered to
just 2.1%.

The predicted interception efficiency of Year 6 (leaf area index
of 5.3) increases slightly from 0.67 to 0.73 from the equator to
40° due to the effect of lower average solar elevations (Fig. 4b). εi
could be raised to 0.88 by increasing planting density to 3906
plants ha�1 from the typical planting density of 2500 plants ha�1

(Garcia-Moya et al., 2011; Fig. 4c,d).

Prediction and validation of diel leaf CO2 uptake

Five parameters of our metabolic model are controlled by
changes during the diel cycle, that is, Rubisco activity, the malate
inhibition constant of PEPC, stomatal conductance and malate
transport into and out of the vacuole (Fig. 1; Methods S2:
MS2.3). Compared with measured patterns of CO2 assimilation
for different Agave species, the model successfully captured the
four phases of the CAM cycle in duration and magnitude of flux
(Fig. 5a,b), providing strong validation of the model. The pre-
dicted late-afternoon Phase IV was accentuated by a simulated
50% elevation of Rubisco activity, showing this to be a key lim-
itation in this phase and in Phase II (Fig. 5b). The response of
predicted net diel CO2 uptake to total incident photosynthetic
photon flux matched measured values closely (Fig. 5c).

Sensitivity analysis showed strong effects of varying maximum
stomatal and mesophyll conductances, as well as the assumed
minimum vacuolar pH, and maximum activities of both PEPC

Table 2 Maximum energy conversion efficiency (εt) of C3, C4 and
crassulacean acid metabolism (CAM) plants.

Photosynthetic
type

ATP per
CO2

Nicotinamide
adenine
dinucleotide
phosphate
per CO2

Quantum
cost εt

C3 3 2 8 0.046
C4 (ME) 5 2 12 0.060
CAM (ME) 7 2 16 0.045/

0.045
CAM (PEPCK) 6.25 2 14.5 0.049/

0.048

It was assumed that the extra ATP required in the daytime in C4 plants and
CAM plants is generated from cyclic electron transport and that the H+/
ATP ratio is 4. According to the calculation method of Zhu et al. (2008), 1
mole quanta has 173.5 kJ energy. One-sixth of a mole glucose (1C carbo-
hydrate unit) contains 477 kJ energy. Maximum energy absorption by
photosystems is 37.2%. The costs of photorespiration in both C4 and CAM
are ignored (numbers after ‘/’ considered the cost of photorespiration in
Phase IV to be the same as that of C3 plants, Supporting Information
Fig. S12), and respiration is assumed to be 30% of the total net photosyn-
thetic CO2 uptake for all types of plants. The flux density of photosyntheti-
cally active photon interception is assumed as 90% for all photosynthetic
types. Details of the calculations are given in Methods S3.
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Fig. 2 Reconstructed shoot architecture of an Agave tequilana plant following the rules of the structural model through 7 yr of growth developed from
prior measurements (Nobel & Valenzuela, 1987; Table 3). The color scheme is simply to depict height above the ground.

Fig. 3 Diurnal photosynthetically active photon flux density (PPFD) absorption of a single leaf facet on each of the adaxial (a, c, e) and abaxial (b, d, f)
surfaces in the top (a, b), middle (c, d) and bottom (e, f) of the Agave tequilana canopy are shown on the left-hand side. The coordinate (x, y, z) of the cen-
troid of the leaf facet is noted in parentheses for each height. The simulation is for June 2022 at Tequila, Jalisco, Mexico (20.88°N, 103.83°W). (g) The pre-
dicted light environment inside an A. tequilana canopy at 10:00 h on the same day.
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and vacuolar malate transport. These had the greatest effects on
CO2 assimilated at night in Phase I (Fig. S5). Rubisco activity
(Fig. 5b), the assumed minimum pH in the vacuole, and PEPC
activity at night exerted strong control over malate availability
and hence the duration of Phase III (Fig. S5c,e,f). Conversely,
lower Rubisco activity may result in failure to utilize all the
malate accumulated during the previous night before the next
phase (Fig. S5e). While the results show little increase in noctur-
nal CO2 uptake with increased PEPC, large losses result from a
decrease in PEPC (Fig. S5). Lowering temperature below a 24-h
average of 15°C substantially decreases CO2 uptake from the
atmosphere in both Phase I and Phase IV (Fig. 6).

Factors controlling the total canopy carbon gain of an
A. tequilana canopy

When photosynthesis of each leaf facet of the canopy is taken
into account in the 8-yr growth cycle of A. tequilana in Tequila,
Mexico (Fig. 7), the efficiency with which the available photo-
synthetically active radiative energy is converted into chemical
energy in the form of biomass is just 0.0069. The annual surface
photosynthetically active radiation received at Tequila was taken
as 3600MJ m�2, calculated from the annual average irradiation
of 5.7 kWhm�2 d�1 at nearby Guadalajara (Dı́az-Torres
et al., 2017), and assuming that PAR is 48.7% of total

Fig. 4 Canopy light interception with age, density and location of the stand. (a) Proportion of available photosynthetically active photon flux density
(PPFD) intercepted each year over the 8-yr growth cycle, assuming a planting density of 2500 ha�1 at Tequila, Mexico, on June 2022. (b) The proportion
of available PPFD intercepted by a 6-yr-old Agave tequilana canopy of leaf area index (LAI) 5.3 and planting density of 2500 ha�1 with latitude. (c) As for
(a), but with a mature A. tequilana canopy with varied plant density. The proportion of PPFD intercepted by a 6-yr-old A. tequilana canopy, as affected by
planting density. (d) The canopy structure of A. tequilanawith two planting densities: 2500 ha�1 (a plant spacing of 2 m within and between rows) and
3906 ha�1 (spacing of 1.6 m). LAI was calculated based on the total area of both sides of all leaves. The color scheme is simply to depict height above the
ground.
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irradiation. Assuming a dry biomass energy content of
16MJMg�1, the efficiency of 0.0069 would result in a produc-
tivity of c. 1.56 kg m�2 yr�1, or 15.6 Mg ha�1 annualized over
the 8-yr growth cycle. This results from the slow rate at which
the A. tequilana expands to cover the ground after planting.

To assess the impact of latitude and temperature in desert
regions, Ac for a mature (6-yr-old) canopy was assessed for both

Phoenix, Arizona, in the USA and Tequila, Jalisco Mexico, using
recorded local monthly average temperatures (Fig. 8). Although
net carbohydrate gain was similar at both locations in the sum-
mer, it was zero for Phoenix in the winter months and also sub-
stantially lower in the early spring and late autumn than during
the summer months. The predicted productivity of a hypotheti-
cal 6-yr plantation was 20.9Mg ha�1 in Phoenix and
28.5Mg ha�1 in Tequila, assuming an LAI of 5.3 at both loca-
tions.

Despite being in a high-light environment, the dense packing
of thick leaves in the rosette and distribution of half of the photo-
synthetic apparatus on the abaxial surface results in significant
light limitation in Agave. This shading is no doubt critical for
lowering temperatures and in turn cuticular water loss. However,
in Year 1, taking account of light in all daylight hours, 69% of
the photosynthetic surface is light-limited, based on assimilation
rates < 0.9 of light-saturated rate, rising to 92% by Year 6.

Varying biochemical and anatomical parameters in the sensi-
tivity analysis from 0.25- to 1.75-fold showed that, at the canopy
level, Rubisco and minimum vacuolar pH shared the highest
control coefficients for total daily canopy mass gain (Ac) during
early growth (simulated Year 1). However, by Year 6, Rubisco
became dominant (Tables 4, 5; Figs S6–S9).

Ac is linearly related to leaf area index (LAI) in the first 4 yr,
approaching an optimum LAI of c. 6–7 in Year 6 and 7 (Table 5;
Fig. S9a–f). In the canopy, the leaf angle to the vertical progres-
sively increases from top to bottom. The predicted optimal angle
of this lowest (oldest) leaf increases with canopy size (Table 5;
Fig. S9g–l). Ac showed little sensitivity to leaf reflectance during
the first years of growth, but increased reflectance increased Ac in
the later years of the crop growth cycle by increasing light at the
abaxial surfaces toward the leaf bases (Table 5; Fig. S9m–r).
Simulated water-use efficiency (WUE) averaged over 8 yr was
c. 5 mmol[CO2] mol[H2O]�1, or 8 g kg�1, showing relatively lit-
tle sensitivity to LAI, a small increase with leaf reflectivity in later
years, but a strong sensitivity to maximum leaf angle (Fig. S9).

Discussion

To explore factors limiting the productivity of CAM plants, a
whole-shoot photosynthesis model was developed. This inte-
grated a new kinetic model of carbon assimilation in CAM with

Fig. 5 Modelled and measured diel changes in CO2 uptake. (a) Simulated
diel changes in leaf net CO2 uptake, total vacuolar malate concentration
([MALt]vacu) and vacuolar pH. (b) Simulated diel net CO2 uptake rate
across the course of a day in which the accumulated photosynthetic
photon flux density is 50mol m�2 d�1 (red line). The dashed red line is the
simulated net CO2 uptake rate with a 50% increase in Rubisco activity
(Vmax_Rubisco). Triangles, open circles and squares with black lines are
measured rates from Nobel (1984, 1985, 1988). (c) Predicted daily net
CO2 uptake vs photosynthetically active radiation (red line). Closed circles
and open triangles are the measured daily assimilation values of
Nobel (1984, 1985). The simulations are for a constant temperature of
25°C, which is close to the average of Tequila, Mexico. The black bar
along the x-axis of (a, b) indicates the duration of darkness (night).
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a 3-D canopy architectural model and ray-tracing algorithm to
predict temporal and spatial light distribution. In turn, CO2

assimilation in time and space across the 3-D structure of the

shoot was predicted (Figs 2–4). Using Agave tequilana, the model
predicted the light distribution and net carbon assimilation of the
crop over its 8-yr cultivation cycle. Predicted monthly carbon
gain and annual productivity were comparable with biomass
measurements and eddy covariance studies of A. tequilana crops
in Mexico (Fig. 8; Nobel, 1988; Owen et al., 2016). The model
successfully recapitulated the observed daily patterns of net CO2

exchange, malic acid content and vacuolar pH in Agave through
the four phases of CAM (Fig. 5a,b; Neales, 1973; Nobel, 1984,
1985, 1988; Holtum & Winter, 2014; Winter et al., 2014) and
provided a good fit to the observed relationship between net diel
CO2 uptake and total incident photosynthetic photon flux
(Fig. 5c; Nobel, 1984, 1985).

New features of the CAM canopy photosynthesis model

Our model incorporates new features compared with previous
dynamic models. First, the empirically observed relationship
between vacuolar pH and malic acid concentration was used to
simulate diel changes in vacuolar pH. This enabled regulation of
metabolism by vacuolar pH, in which no further net import of
malate into the vacuole could occur at night once the minimum
pH value (in this case pH 3.5) was reached. In practice, this can
correspond to the time at which the pool of storage carbohydrate
has been exhausted, so the relative importance of these

Table 3 Parameters used to construct the 3-D
canopy photosynthesis model for Agave
tequilana.

Parameter 1-yr 2-yr 3-yr 4-yr 6-yr 7-yr References

Number of leaves 13 22 41 61 114 126 Nobel & Valenzuela (1987)
Leaf length (cm) 41 57 76 90 121 129 Nobel & Valenzuela (1987)
Leaf width (cm) 4.52 5.6 5.33 7.73 9.78 10.09 Calculated based on leaf area

and length
Leaf area
(m2 plant�1)

0.38 1.09 2.58 6.6 21.14 25.50 Nobel & Valenzuela (1987)

Maximum leaf
angle (°)

57 57 69 75 86 86 Assumed

Fig. 6 Influence of leaf temperature on simulated leaf net CO2 uptake. (a) Simulated diel courses of leaf temperature with 24-h means of 15, 20, 25, 30, or
35°C. (b) The corresponding predicted diel courses of leaf net CO2 uptake rate. The cumulative PPFD at all temperatures was 50mol m�2 d�1. The black
bar along the x-axis indicates night.

Fig. 7 Canopy carbon accumulation rate of Agave tequilana simulated for
successive years of growth as depicted in the structural model (Fig. 1) for
Tequila, Mexico. The simulation in each case was extrapolated from June
2022. Planting densities were 2500 and 3906 plants ha�1, respectively.
The productivity per year was calculated assuming the average daily
carbon accumulation for each yr is 74% of that in June (Fig. 8b).

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

New Phytologist (2023) 239: 2180–2196
www.newphytologist.com

New
Phytologist Research 2189

 14698137, 2023, 6, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19128 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [22/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



limitations to total nocturnal CO2 fixation would merit further
investigation. Second, stomatal conductance is regulated by
atmospheric and intercellular CO2 concentration. Many studies
have demonstrated a phenomenological linkage between atmo-
spheric or intercellular CO2 concentrations (ci) and stomatal con-
ductance (gs) in C3, C4 and CAM plants, although
mechanistically this results, most likely, from co-varying signal(s)
(summarized by Morison, 1987). The possible linkage between ci
and gs, and corresponding CO2 uptake rate (A), still needs further
elucidation, especially in relation to processes responsible for the
characteristic inverse stomatal rhythm of CAM plants (Males &
Griffiths, 2017). Third, temperature effects are accounted for
through effects on enzyme activity, CO2 solubility and saturated
water vapor pressure (Methods S2: MS2.2). This enables the
model to predict the performance of CAM photosynthesis in dif-
ferent temperature regimes that characterize the habitats in which
CAM plants are found or might be being considered for planting.
And fourth, the balance of energy (ATP and NADPH) produc-
tion and consumption is explicitly included, so the response of A
to PPFD can be accurately simulated in real time.

Given our imperfect understanding of CAM, the current
model inevitably has limitations. For instance, it employs a
phenomenological prediction of gs and incorporates circadian-
regulated parameters to obtain the four phases of CAM
photosynthesis (Eqn 4; Methods S2: MS2.3; Fig. S10). Further-
more, we have not performed a continuous simulation for the
entire growth period. Nevertheless, this model provides a frame-
work for future extension both with new data and for other

CAM species. To enhance the accuracy of model predictions, a
significant amount of biochemical and physiological data, includ-
ing systematic anatomical, physiological, biochemical and signal
transduction datasets for the target species will be critical.
Though the current model is parameterized for A. tequilana, it
can be easily adapted for other CAM species of agronomic
importance, such as pineapple (Ananas comosus (L.) Merr.).

While simplified equations that dynamically partition sunlit
and shaded leaf area have proven very effective for C3 and C4

crops (De Pury & Farquhar, 1997), the form of most CAM crops
violates the assumptions of these models. The ray-tracing method
used here for Agave would be readily applicable to other CAM
plants, as has been demonstrated for Opuntia spp. by
Nobel (1988), despite their very different shoot morphology.
The present model could also be used to contrast the potential
benefit of water saving by CAM plants, or facultative CAM
plants, for example, Talinum triangulare (Brilhaus et al., 2015),
with typical C3 or C4 plants. Finally, with increasing interest in
engineering C3 plants to perform inducible CAM photosynthesis
in response to drought (Borland et al., 2014; Yang et al., 2015;
Lim et al., 2019; Niechayev et al., 2019b; Schiller &
Bräutigam, 2021), our model provides a framework for testing
different engineering options for CAM biodesign.

In the past few years, technical advances have provided ever-
increasing numbers of CAM genomes, transcriptomes and meta-
bolomes (Ming et al., 2015; Wai et al., 2017; Yang et al., 2017;
Ceusters et al., 2019). To extract useful information from large
amounts of ’omics data, computational modeling approaches are

Fig. 8 Model-predicted daily carbon accumulation of a mature Agave tequilana canopy (assuming a constant leaf area index of 5.3; as depicted in Fig. 1)
over the course of 1 yr in (a, b) Tequila, Mexico and (c, d) Phoenix, USA. Planting density was 2500 plants ha�1. The monthly average maximum and mini-
mum temperatures are shown as black and red lines, respectively (a, c).
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increasingly important (Shameer et al., 2018; Chomthong &
Griffiths, 2020; Burgos et al., 2022). With the methods of model
integration we developed previously (Kannan et al., 2019; Sham-
eer et al., 2022), our CAM model has the potential to interface
with transcriptome data, gene regulatory networks and metabolic
models based on flux balance analysis (Cheung et al., 2014;
Shameer et al., 2018; Töpfer et al., 2020). This will enable the
exploration and assessment of the potential of CAM crops of
varying forms in a more comprehensive way, identifying poten-
tial targets for yield improvement and contributing to CAM bio-
design. Recent progress in implementing RNAi and CRISPR/
Cas9 approaches in investigating the regulation and expression of
CAM photosynthesis (Dever et al., 2015; Liu et al., 2019; Boxall
et al., 2020) has opened a feasible way to test and realize such
model predictions.

How efficient can the crop be over a growth cycle by
comparison with the predicted theoretical maximum of
CAM?

εt is the proportion of solar energy incident on a unit area of
ground, accumulated in the crop as biomass. The theoretical
maximum εt of Agave spp. (NADP-ME CAM) was 0.045, simi-
lar to C3 photosynthesis (Table 2; Methods S1: Table MS3.2;
Fig. S4). Two factors may slightly reduce this calculated effi-
ciency of Agave tequilana crops. First, it does not account for
photorespiration. However, photorespiration has to result if
Rubisco is fixing CO2 directly from the atmosphere, as in Phase
IV. Indeed, experimental observations show that c. 25% of diel
C fixation in Agave can occur in Phase IV under well-watered
conditions (Winter et al., 2014). This will vary with tempera-
ture and the duration of Phase IV. Second, our calculation of
NAD(P)-ME CAM assumes starch as the storage carbohydrate,
releasing glucose monomers via the phosphorolytic pathway in
Phase I (Fig. S1). However, sucrose and fructans are significant
components of the storage carbohydrate pool in Agave (Abra-
ham et al., 2016). Their remobilization incurs slightly higher
energy costs. In the flux balance analysis of Shameer
et al. (2018), the theoretical energy conversion efficiency using
sucrose or fructans as the source of PEP is 0.945 or 0.832 of
that of starch, respectively.

The achieved εt in the first 3 yr of a field crop of A. tequilana
under typical agronomy is much lower than that of annual C3

and C4 crops (Table 2). Light interception is initially low due to
slow ground coverage after planting. Our results indicate that
average light interception over the entire growing cycle is only
41% at a typical planting density for A. tequilana of
2500 plants ha�1, reaching c. 75% in Year 7 (Fig. 4a), whereas
the crop only absorbs 8.3% of total incident light in its first 3 yr
(Fig. 4a). Thus, the εt of A. tequilana over the whole growth cycle
is only 0.021%. Although this is much lower than the theoretical
maximum value of either C3 or C4 plants (Table 2), it is compar-
able to the realized εt of C3 and C4 crops in the field. For exam-
ple, the realized εt of wheat and rice is c. 0.02 (Slattery &
Ort, 2015).

Arid and semiarid regions account for about one-third of the
global land area (5 billion ha). These are regions where most C3

and C4 crops cannot grow or are limited to short and unpredict-
able rainy seasons (Van Velthuizen, 2007). These regions have
been expanding and are predicted to account for > 40% of global
land by 2100 (Huang et al., 2016; Prăvălie, 2016). Using
A. tequilana as a well-studied example, the peak productivity
of Agave has been claimed to be as high as 50Mg dry
biomass ha�1 yr�1, which with a sugar content of c. 27–38% (w/
w) could produce an ethanol yield of up to 14 000 l ha�1 (Bor-
land et al., 2009). This could double with high-yielding cultivars
and appropriate management (Yan et al., 2011). Theoretically, if
0.14% of the world’s arid and semiarid regions were used to cul-
tivate A. tequilana, and assuming only its nonstructural carbohy-
drates are used to produce ethanol, the ethanol productivity
could be as high as 97 billion liters, equivalent to the total
amount of ethanol produced globally in 2021 (RFA, 2021).

Table 4 Biochemical and physiological parameters used in the model of
Agave techilana and their sensitivities with respect to daily total canopy
net photosynthetic CO2 uptake rate.

Parameter Default value

Sensitivity coefficient

Year 1 Year 3 Year 6

gs 0.1 mol m�2 s�1 0.06 0.05 0.05
gm 0.1mol m�2 s�1 0.02 0.02 0.02
Vmax_PEPC 35 μmol m�2 s�1 0.01 �0.01 �0.03
Vmax_Rubisco 30 μmol m�2 s�1 0.30 0.36 0.57
Vmax_MAL_in 80 μmol m�2 s�1 0.04 0.04 0.05
[pH]vacu_min pH= 3.5 0.27 0.21 0.15

Simulation for June 2022 at Tequila, Mexico (latitude 20.66°N). Each
parameter was decreased by 25% to assess system sensitivity with respect
to net canopy CO2 uptake rate (Eqn 8).

Table 5 Sensitivity of different shoot architectural parameters of Agave
tequilana to daily total canopy net photosynthetic CO2 uptake rate.

Parameter
Growing
stage (yr)

Default
value

Sensitivity
coefficient

Leaf area index (m2 m�2) 1 0.09 0.89
2 0.27 0.95
3 0.64 0.86
4 1.65 0.86
6 5.29 0.58
7 6.37 0.46

Maximum leaf angle (°) 1 57 0.12
2 57 0.29
3 69 0.16
4 75 0.55
6 86 0.61
7 86 0.62

Leaf reflectance 1 0.1 �0.01
2 0.1 0.04
3 0.1 0.07
4 0.1 0.13
6 0.1 0.26
7 0.1 0.29

Simulation was for June 2022 at Tequila, Mexico (latitude 20.66°N). Each
parameter was decreased by 25% to assess system sensitivity with respect
to net canopy CO2 uptake rate (Eqn 8).
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What proportion of the photosynthetic surface is light-
limited in the canopy?

Although CAM in desert species might be considered light-
saturated for most of the day, ray tracing shows a very significant
part of the photosynthetic surface to be light-limited in
A. tequilana. Nobel & Garcı́a de Cortázar (1987) also described
this effect for Agave species, noting that light limitation was espe-
cially pronounced in the lower leaves with plant age. Consistent
with measured values for A. tequilana, Fig. 5c predicts that a
PPFD of 20 mol m�2 d�1 would be needed to utilize all malate
accumulated in the previous night. However, on a clear sky sum-
mer day, 55% of the photosynthetic surfaces in Year 1 and 85%
of the surfaces by Year 7 would receive < 20 mol m�2 d�1.
Furthermore, Agave species often have concavely curved leaves,
which would result in an even larger proportion of the photosyn-
thetic surfaces being light-limited, especially on the adaxial sur-
face (Fig. S10).

Are there realistic opportunities to increase the energy
conversion efficiency (εt) of Agave spp.?

Failure of A. tequilana to intercept much of the available light in
the earlier years of its 8-yr growth cycle is due to the slow closure
of the canopy (Fig. 4a). Our simulation indicated that increasing
planting density to 3906 plants ha�1 would increase light inter-
ception by c. 27.5% (Fig. 4c), increasing productivity up to
20.3% (Fig. 7).

At standard planting densities, interception and productivity
approach a plateau of c. 27 Mg ha�1 yr�1 in Year 6 (Fig. 7), a
high productivity comparable to the best C4 and C3 crops. How-
ever, this is when the stem base is ready for harvest, and the cycle
recommences. This efficiency may, however, be maintained in
Agave species grown for fiber, such as sisal (Agave sisalana Perr-
ine) and henequen (Agave fourcroydes Lem.), which may have a
growth cycle of 15+ yr. Here, lower leaves can be harvested to
maintain a constant canopy size, once near canopy closure is
achieved (Purseglove, 1972; Nobel, 1988). If the Year 6 produc-
tivity was similar to A. tequilana, but maintained for a further
10 yr, the annualized conversion efficiency would increase to
0.009 and the biomass yield to 20.3Mg ha�1 yr�1. This exceeds
the yields of the temperate C4 perennial biomass crop Panicum
virgatum (switchgrass) and is comparable to the even more pro-
ductive Miscanthus × giganteus (Beale & Long, 1995; Arundale
et al., 2014).

With the present model, we systematically evaluated potential
manipulations that can be performed to improve the carbohy-
drate mass gain of the crop, specifically the architectural and bio-
chemical parameters. Of the factors that may hold promise for
future crop improvement, leaf area index (LAI) and maximal leaf
angle are the two most important canopy architectural para-
meters. Variations in these have major impacts on canopy CO2

uptake due to altered light interception and distribution in the
canopy (Table 5; Fig. S9). Leaf reflectance does not influence
canopy productivity in the early growing stages, but it becomes a
major factor in mature A. tequilana plants, as higher leaf

reflectance can increase carbon gain by c. 20%. Rubisco was pre-
dicted to be the most important enzyme controlling A. tequilana
canopy photosynthesis throughout the entire growing season.
Minimum vacuolar pH, which may ultimately limit malate sto-
rage capacity in Phase I, also had a high control coefficient over
canopy photosynthesis in the early growth stages (Table 4;
Figs S6–S8).

This study has developed a means to integrate the unique 3-D
structures and metabolism of CAM crops to predict ways to
improve productivity through agronomic, plant structural and
metabolic modification, using the example of A. tequilana. It
strengthens proposals to further develop and utilize CAM on the
large global tracts of degraded semidesert or arid land that are not
accessible to the majority of staple food crops.
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Schiller K, Bräutigam A. 2021. Engineering of crassulacean acid metabolism.

Annual Review of Plant Biology 72: 77–103.
Shameer S, Baghalian K, Cheung CYM, Ratcliffe RG, Sweetlove LJ. 2018.

Computational analysis of the productivity potential of CAM. Nature Plants 4:
165–171.

New Phytologist (2023) 239: 2180–2196
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

Research

New
Phytologist2194

 14698137, 2023, 6, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19128 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [22/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.mathworks.com
https://www.mathworks.com
https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production
https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production


Shameer S, Wang Y, Bota P, Ratcliffe RG, Long SP, Sweetlove LJ. 2022. A

hybrid kinetic and constraint-based model of leaf metabolism allows

predictions of metabolic fluxes in different environments. The Plant Journal
109: 295–313.

Slattery RA, Ort DR. 2015. Photosynthetic energy conversion efficiency: setting

a baseline for gauging future improvements in important food and biofuel

crops. Plant Physiology 168: 383–392.
Smith JAC, Ingram J, Tsiantis MS, Barkla BJ, Bartholomew DM, Bettey

M, Pantoja O, Pennington AJ. 1996. Transport across the vacuolar

membrane in CAM plants. In: Winter K, Smith JAC, eds. Crassulacean
acd metabolism: biochemistry, ecophysiology and evolution. Berlin, Germany:

Springer, 53–71.
Smith JAC, Nobel PS. 1986.Water movement and storage in a desert succulent:

anatomy and rehydration kinetics for leaves of Agave deserti. Journal of
Experimental Botany 37: 1044–1053.

Song Q, Zhang GL, Zhu X-G. 2013.Optimal crop canopy architecture to

maximise canopy photosynthetic CO2 uptake under elevated CO2 – a
theoretical study using a mechanistic model of canopy photosynthesis.

Functional Plant Biology 40: 109–124.
Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE. 1979.

Crassulacean acid metabolism and diurnal variations of internal CO2 and O2

concentrations in Sedum praealtumDC. Australian Journal of Plant Physiology
6: 557–567.

Stewart JR. 2015. Agave as a model CAM crop system for a warming and drying

world. Frontiers in Plant Science 6: 684.
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