Skip to main content

Microalgal metabolic engineering strategies for the production of fuels and chemicals

Bioresource Technology

Nam Kyu Kang, Kwangryul Baek, Hyun Gi Koh, Christine Anne Atkinson, Donald R. Ort, Yong-Su Jin


Microalgae are promising sustainable resources because of their ability to convert CO2 into biofuels and chemicals directly. However, the industrial production and economic feasibility of microalgal bioproducts are still limited. As such, metabolic engineering approaches have been undertaken to enhance the productivities of microalgal bioproducts. In the last decade, impressive advances in microalgae metabolic engineering have been made by developing genetic engineering tools and multi-omics analysis. This review presents comprehensive microalgal metabolic pathways and metabolic engineering strategies for producing lipids, long chain-polyunsaturated fatty acids, terpenoids, and carotenoids. Additionally, promising metabolic engineering approaches specific to target products are summarized. Finally, this review discusses current challenges and provides future perspectives for the effective production of chemicals and fuels via microalgal metabolic engineering.

Go to original publication Download PDF

The Ort Lab is supported by many public and private partnerships, including the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research, the UK Government's Department for International Development, the U.S. Department of Energy, and the Advanced Research Projects Agency-Energy.

Privacy Policy | Contact Us