Skip to main content

2017, DOI: 10.1007/s11120-017-0369-8

Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis

Photosynthesis Research

Berkley J. Walker, Douglas J. Orr, Elizabete Carmo-Silva, Martin A. J. Parry, Carl J. Bernacchi, and Donald R. Ort


Abstract

Rates of carbon dioxide assimilation through photosynthesis are readily modeled using the Farquhar, von Caemmerer, and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 photosynthesis. As models of CO2 assimilation rate are used more broadly for simulating photosynthesis among species and across scales, it is increasingly important that their temperature dependencies are accurately parameterized. A vital component of the FvCB model, the photorespiratory CO2 compensation point (Γ *), combines the biochemistry of Rubisco with the stoichiometry of photorespiratory release of CO2. This report details a comparison of the temperature response of Γ * measured using different techniques in three important model and crop species (Nicotiana tabacum, Triticum aestivum, and Glycine max). We determined that the different Γ * determination methods produce different temperature responses in the same species that are large enough to impact higher-scale leaf models of CO2 assimilation rate. These differences are largest in N. tabacumand could be the result of temperature-dependent increases in the amount of CO2 lost from photorespiration per Rubisco oxygenation reaction.

Go to original publication Download PDF

The Ort Lab is supported by many public and private partnerships, including the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research, the UK Government's Department for International Development, the U.S. Department of Energy, and the Advanced Research Projects Agency-Energy.

Privacy Policy | Contact Us