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Abstract In C3 plants, photorespiration is an energy-
expensive process, including the oxygenation of ribulose-
1,5-bisphosphate (RuBP) by ribulose 1,5-bisphosphate
carboxylase/oxygenase (Rubisco) and the ensuing multi-
organellar photorespiratory pathway required to recycle
the toxic byproducts and recapture a portion of the fixed
carbon. Photorespiration significantly impacts crop produc-
tivity through reducing yields in C3 crops by as much as 50%
under severe conditions. Thus, reducing theflux through, or

improving the efficiency of photorespiration has the
potential of large improvements in C3 crop productivity.
Here, we review an array of approaches intended to
engineer photorespiration in a range of plant systems with
the goal of increasing crop productivity. Approaches
include optimizing flux through the native photorespiratory
pathway, installing non-native alternative photorespiratory
pathways, and lowering or even eliminating Rubisco-
catalyzed oxygenation of RuBP to reduce substrate
entrance into the photorespiratory cycle. Some proposed
designs have been successful at the proof of concept level.
A plant systems-engineering approach, based on new
opportunities available from synthetic biology to imple-
ment in silico designs, holds promise for further progress
toward delivering more productive crops to farmer’s fields.
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INTRODUCTION

Global agricultural demand is rapidly increasing as the
global human population climbs towards 9 billion bymid-
centurywith increasingaffluence (UNPopulationDivision
2017). It is projected that agricultural output will need to
increase 70% to 100% to meet this demand (Tilman et al.
2011; Ray et al. 2013), even while available arable land is
stagnant or even decreasing. The Green Revolution
resulted in a more-than doubling of global crop produc-
tion, through selective breeding and increased fertilizer

inputs,while improvingboth yield potential and resilience
to environm ental and biotic stresses. Improved photo-
synthetic efficiency played little role in yield potential
improvement, during the Green Revolution, whereas
those traits that did are now near their maximum
efficiency (Zhu et al. 2010; Ray et al. 2013; Ort et al. 2015).
While there is a suite of improvements to crop plants and
cropping systems that will be needed to meet the
challenge of doubling production, improving yield
potential must play a central role for which improving
photosynthetic efficiency must be the central focus.
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The primary carboxylase of the C3 photosynthetic
cycle is ribulose 1,5-bisphosphate carboxylase/oxygenase
(Rubisco), which generates two molecules of 3-phos-
phoglycerate (3-PGA)by catalyzing the additionof CO2 to
the five-carbon acceptor, ribulose-1,5-bisphosphate
(RuBP). A major inefficiency of the C3 cycle occurs
when Rubisco catalyzes oxygenation of RuBP, which
results in the generation of one molecule of 3-PGA and
onemolecule of 2-phosphoglycolate (2-PG) (Bowes et al.
1971; Ogren andBowes 1971; Somerville andOgren 1979a;
Lorimer 1981).The 2-PG is toxic toplants, as accumulation
can lead to reduction in RuBP regeneration by limiting
the function of phosphofructokinase and triose phos-
phate isomerase (Kelly and Latzko 1976; Artus et al. 1986;
GonzalezMoro et al. 1997). The photorespiratory carbon
oxidative pathway both prevents the accumulation of 2-
PG as well as recovers a portion of previously fixed
carbon in 2-PG (Somerville and Ogren 1981; Ogren 1984;
Artus et al. 1986; Peterhansel et al. 2010).

The first step in the photorespiratory pathway is the
dephosphorylation of 2-PG by 2-phosphoglycolate
phosphatase to produce glycolate (Somerville and
Ogren 1979b). Glycolate is transported out of the
chloroplast by a plastidic glycolate glycerate trans-
porter (PLGG1) and a bile acid sodium symporter
(BASS6) (Figure 1) (Pick et al. 2013; Walker et al.

2016a; South et al. 2017). Glycolate then undergoes a
multi-step conversion to glycine in the peroxisome,
after which it moves to the mitochondria. In the
mitochondria, glycine decarboxylation and conversion
to serine produces ammonia (NH3) and releases CO2.
Serine generated in the mitochondria moves to the
peroxisome where it is converted to glycerate. Finally,
PLGG1 transports glycerate into the chloroplast (Pick
et al. 2013; South et al. 2017) where it is phosphorylated
and reenters the C3 cycle (Figure 1).

The photorespiratory pathway recovers 75% of the
fixed carbon lost due to oxygenation, with the
remaining 25% released as CO2 in the mitochondria
(Bauwe and Kolukisaoglu 2003; Peterhansel et al. 2010).
Whereas C3 plants can function well without this
recovery pathway, so long as Rubisco oxygenase
activity is fully repressed (e.g., very high [CO2] or very
low [O2]), it is required for survival under all normal air
conditions and is energetically quite costly to the plant.
Each turn of the photorespiratory cycle requires the
equivalent of 12.25 ATP (calculated in [Peterhansel et al.
2010]), which is largely due to the energy demands of
re-fixing the released CO2 and re-assimilating NH3.

The oxygenation of RuBP increases with increasing
temperature due to decreases in Rubisco specificity
and, under drought conditions, when internal CO2

Figure 1. Photorespiration in plants
Photorespiration is a multi-organellar process in photosynthetic cells involving the chloroplast (green), peroxisome
(blue), mitochondria (yellow), and cytosol (white). Known transporters between organelles are depicted. For every
two oxygenation reactions catalyzed by Rubisco in the chloroplast, one molecule of glycerate is generated in the
peroxisome and transported to the chloroplast for reintroduction into the C3 cycle and one carbon is released as
CO2 in the mitochondria. Number of carbons per molecule are indicated. Energy demand of photorespiration
depicted in reducing equivalents (NAD(P)H) and ATP reviewed in Peterhansel et al. (2010).
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concentration is lowered due to declining stomatal
conductance (Ku et al. 1977; Jordan and Ogren 1984;
Brooks and Farquhar 1985; Sharkey 1988; Zhu et al.
2008). During such periods of high temperatures or
severe drought as much as 50% of the ATP produced
through photosynthesis may be used for photorespira-
tion (Peterhansel et al. 2013; Walker et al. 2016b). The
high energetic cost of photorespiration represents a
significant reduction in yield potential of C3 crops
(Walker et al. 2016b) explaining the decades-long effort
into reducing it.

CURRENT APPROACHES TO OPTIMIZING
PHOTORESPIRATION

Three main approaches have been taken to lower the
cost of photorespiration with the goal of increasing
plant productivity. The first is to reduce oxygenation of
RuBP by increasing the efficiency of Rubisco through
either genetic manipulation of the enzyme, or by
concentrating CO2 around Rubisco (Raines 2006). The
second is to manipulate the native photorespiratory
pathway through gene mutation or overexpression to
increase the rate of toxic byproduct recycling and
carbon recovery (Peterhansel et al. 2013b). Lastly, the
third approach is to install non-native alternative
metabolic pathways to reduce the energetic cost of
photorespiration (Figure 2) (Peterhansel and Maurino
2011; Maurino and Weber 2013).

Alternate Rubiscos
Rubisco has long been a target of genetic manipulation,
with the goal of improving its selectivity and kinetic
performance (Somerville and Ogren 1982; Zhu et al.
2004; Mueller-Cajar and Whitney 2008; Whitney and
Sharwood 2008). However, attempts to engineer a
better enzymehave so far beenunsuccessful.Most Form
I Rubiscos (those found in land plants, green algae, and
cyanobacteria) appear to exhibit a trade-off between
catalytic turnover rate (speed) and substrate specificity.
Thus, attempts to reduce theRubiscooxygenaseactivity,
through enhanced specificity for CO2, have impaired CO2

reactivity at the catalytic site (Tcherkez et al. 2006; Savir
et al. 2010; Camille et al. 2018).

This trend is not observed in Form I Rubisco from
diatoms, which contain a carbon concentrating mecha-
nism and sustain near-C3 levels of enzyme specificity
and carboxylation turnover rates, in addition to much
slower rates of oxygenation (Young et al. 2016). This

highlights the need to eliminate sampling bias towards
crop plants and model species and survey Rubisco
kinetic data from diverse sources to identify alternative
evolutionary pathways to lower oxygenase activity (Orr
et al. 2016; Prins et al. 2016). Implementing a non-native
Rubisco, such as a high-specificity red algal or
cyanobacterial version, into crop plants could offer a
greater benefit than enhancing native Rubisco kinetics
alone, particularly when coupled with a carbon-
concentrating mechanism (Zhu et al. 2004; Lin et al.
2014b). However, recent unsuccessful attempts to
replace tobacco Rubisco with large and small red algal
Rubisco highlight the importance of co-expression of
compatible chaperones in the successful assembly of
foreign Rubisco in plants (Lin and Hanson 2018).

Recently, a reconstituted Rubisco holoenzyme was
assembled in a bacterial host (Aigner et al. 2017).
Coupled with recent insights in Rubisco species-specific
structure-function relationships (Valegård et al. 2018a,
2018b), and assembly requirements (Saschenbrecker
et al. 2007; Feiz et al. 2012; Whitney et al. 2015), this
provides a much-needed technological breakthrough in
our ability to screen Rubisco variants (Saschenbrecker
et al. 2007; Feiz et al. 2012; Whitney et al. 2015; Valegård
et al. 2018a, 2018b).

Concentrating carbon near Rubisco
In addition to modifying Rubisco directly, other

approaches aim to decrease oxygenation reactions by

concentrating CO2 within the chloroplast (Rae et al.

2017). One strategy to increase the concentration of CO2

around Rubisco uses non-plant carbon concentrating

mechanisms (CCMs) (Figure 2). CCMs have evolved in

cyanobacteria and algae, and the components needed

for a functional CCM include carboxysome or pyrenoid

structures around Rubisco, carbonic anhydrase, along

with inorganic carbon transporters (Morita et al. 1998;

Kinney et al. 2011; Sinetova et al. 2012; Niederhuber et al.

2017; Sharwood 2017; Sommer et al. 2017).
Carboxysomes are microcompartments within the

chloroplast of oxygenic photosynthetic bacteria that
are made of a protein shell, which contains carbonic
anhydrase and Rubisco proteins (Rae et al. 2013a, 2013b;
Sommer et al. 2017). Similar in function, pyrenoids
present in many algae and the hornwort group of land
plants act as a subcellular microcompartment CCM.
Unlike carboxysomes, pyrenoids are surrounded by a
starch sheath and protein layer (Sharwood 2017). To
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Figure 2. Current approaches to optimizing photorespiration
Three models depicting current efforts to optimize photorespiration in C3 crops. Alternative pathways. Non-
native genes are used to more efficiently process glycolate either back to glycerate similar to native
photorespiration or, by fully decarboxylating glycolate to CO2 to be re-fixed by Rubisco. Carbon concentrating
mechanisms (CCM). The installation of pyrenoid or carboxysome structures and the expression of bicarbonate
transporters to prevent Rubisco oxygenation and enrich CO2 at the Rubisco active site. Faster photorespiration.
Increased expression of native genes in the photorespiration pathway facilitate the faster rate of conversion of
glycolate to glycerate, preventing the accumulation of toxic intermediates. Approaches to optimizing
photorespiration could lead to more efficient energy use, reduction in CO2 loss and more ATP and carbon
available for plant growth.
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date, some of these structures have been introduced
into plants representing promising initial steps toward
transplanting a functional CCM (Hanson et al. 2016;
Occhialini et al. 2016).

The b-carboxysome proteins have been introduced
into the chloroplasts of tobacco plants where higher-
order structures have been shown to self-assemble (Lin
et al. 2014a). In addition to the structure of the CCM
microcompartment, Rubisco must be incorporated into
the microcompartment to realize a fully functional
structure, and this is complicated by the structural
requirements needed for Rubisco recruitment. In
pyrenoid formation, Rubisco recruitment is mediated
through a-helices contained on the small subunit of the
Form 1 Rubisco, that are predicted to interact with the
linking protein present in the pyrenoid (Meyer et al.
2012; Mackinder et al. 2016). Engineering native small-
subunits through direct replacement of the two surface
a-helices from Chlamydomonas reinhardtii results in
Rubiscos that are catalytically competent and represent
an ideal background to test candidates for new
recruitment and linker proteins as they emerge
(Atkinson et al. 2017).

To date, fully assembled carboxysomes and pyre-
noid assembly in plant chloroplasts has remained
elusive. Further work needs to be completed to identify
the minimum number of genes responsible for assem-
bly and proper targeting of Rubisco into the CCM
microcompartments. Further understanding the CCM
structure, assembly, and function could have significant
implications in increasing crop productivity (Sharwood
2017). Alternatively, previous work suggests that the
introduction of bicarbonate transporters from CCMs
would, alone, have a net benefit to photosynthesis.
Modelling suggests that installation of the cyanobacte-
rial bicarbonate transporter, BicA could increase light-
saturated photosynthesis by 9% and using all known
bicarbonate transporters could increase rates of
photosynthesis by 16% (McGrath and Long 2014). Recent
attempts at integrating individual components of algal
CCM include the expression of the carbonic anhydrase,
CAH3 in the thylakoid lumen and the bicarbonate
transporter, LCIA in the chloroplast inner membrane of
tobacco generating individual lines with enhanced CO2

uptake, increased photosynthetic efficiency and higher
biomass levels (Nolke et al. 2018).

An alternative method to increase CO2 concentration
at Rubisco is to introduce C4 photosynthesis into C3

crops. C4 photosynthesis has independently evolved
from C3 photosynthesis over 60 times (Sage 2004; Sage
et al. 2011; Sage et al. 2012; Furbank 2017) and is thought
to be an adaption to higher photorespiratory pressures
(Sageet al. 2012).MostC4plant species are located in the
grasslands of tropical and subtropical regions around the
world (Schluter and Weber 2016; Furbank 2017).

The CO2 concentration near Rubisco occurs in C4
plants by dividing photosynthesis activities between the
mesophyll and bundle sheath cells. In mesophyll cells,
CO2 isfirst converted into four-carbonmalate by the non-
oxygen sensitive PEP carboxylase. This four-carbon
dicarboxylic acid is then actively transported into the
bundle sheath (Furbank 2017)where it is decarboxylated,
increasing the CO2 concentration near Rubisco. This C4
“CO2 pump” requires two additional ATPs for everymole
of CO2 fixed. In addition, introduction of C4 photosyn-
thesis into C3 plants requires directed changes in both
the biochemistry of photosynthesis and leaf structure
with increased photosynthetically active bundle sheath
cells, although single cell C4 photosynthesis and C3-C4
intermediates could also be sources of engineering
strategies (Matsuoka et al. 2001; Schuler et al. 2016).
Currently, therehasbeen somesuccess in engineeringC4
photosynthesis into rice through the C4Rice project, but
further investigation intohowC4photosynthesis evolves
and the regulatory elements needed to significantly
convert C3 photosynthesis to C4 is needed to fully realize
the benefits in crops (https://c4rice.com).

ACCELERATING FLUX THROUGH NATIVE
PHOTORESPIRATORY PATHWAY

Discovery of the enzymatic steps involved in the
photorespiratory pathway was largely driven by
mutational studies in Arabidopsis. T-DNA lines were
identified primarily by their requirement of a high CO2

environment for growth. Most of the lines with
insertions in genes encoding key enzymes involved in
the photorespiratory pathway demonstrated lethality,
or poor growth phenotypes under ambient air con-
ditions, but could be rescued with elevated CO2

concentrations (Somerville and Ogren 1979b; Hall
et al. 1987; Murray et al. 1989; Boldt et al. 2005;
Schwarte and Bauwe 2007; Timm et al. 2008; Timm et al.
2012b; Pick et al. 2013; South et al. 2017).

Although this mutational approach efficiently deci-

phered the photorespiratory pathway, it did not reveal
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strategies tooptimize thepathway for improvedgrowth.

Furthermore, a comprehensive study analyzing data

from 40 years of field trials, in soybean and wheat,

showed that cultivars with increased photosynthetic

rates also had higher rates of photorespiration, suggest-

ing that using natural variation in photorespiration to

identify plants with lower levels of photorespiration and

higher productivity would likely not be successful (Aliyev

2012). Yet, studies of natural variation in photorespira-

tion, in tobacco, described the selection of plants with

low photorespiration, which also exhibited higher rates

of photosynthesis and growth. However, the effect

appeared to be more related to higher levels of

peroxisomal catalase than to reduced levels of photo-

respiration, and did not appear to stabilize in successive

generations (Zelitch and Day 1973; Zelitch 1989, 1992).
Some C3 plants, including rice and wheat, appear

able to trap and re-assimilate photorespired CO2 (Sage
and Sage 2009; Busch et al. 2013), suggesting that plants
can use anatomical adaptation strategies to mitigate
the loss of CO2 to the atmosphere without concurrent
reductions in rates of photorespiration. Hence, these
might be relevant traits which could be harnessed for
development of higher yielding crops.

An alternative approach to reduce photorespiratory

yield drag on crop productivity has focused on

increasing the rate of photorespiratory pathway

enzymes, and is showing promising results (Figure 2).

The notion here being that increasing the flux through

the photorespiratory pathway would minimize the

accumulation and toxic effects of 2-PG and glycolate

in the chloroplast, while also accelerating the rate of

carbon recapture and return of PGA to the C3 cycle,

thereby boosting the rate of RuBP regeneration.

Increased expression of two of the components of

the mitochondrial glycine decarboxylase complex, the

L-protein and the H-protein, separately, result in

increased photosynthesis and plant growth, potentially

due to increased flux through the photorespiratory

pathway (Timm et al. 2012a; Timm et al. 2015; Simkin

et al. 2017; Lopez-Calcagno et al. 2018). In addition,

overexpressing the H-protein in tobacco reduced

damage to photosystem II when plants were exposed

to high photorespiratory stress conditions (Lopez-

Calcagno et al. 2018). That these plants may be able

to cope better with the high photorespiratory stress

experienced in agricultural settings due to enhanced

photorespiratory pathway flux would explain the

26%–47% increase in biomass observed in these over-

expressors in the field (Lopez-Calcagno et al. 2018).

Therefore, genetic engineering of the native photo-

respiratory pathway, in combination with anatomical

modifications to increase recovery of photorespired

CO2 and manipulation of other areas of metabolism

closely associated with photorespiration, could be

important strategies when developing crops able to

sustain increased yields to meet the predicted future

food demands (Betti et al. 2016; Timm et al. 2016; Lopez-

Calcagno et al. 2018).

ALTERNATIVE PHOTORESPIRATORY
PATHWAYS

As an alternative to decreasing Rubisco oxygenation, or
increasing efficiency of the native photorespiratory
pathway, there have been several efforts to re-engineer
the photorespiratory pathway using non-native genes
and alternative metabolic pathways. One strategy uses
the E. coli glyoxylate oxidation pathway, which is
intended to convert photorespiratory glycolate to
glycerate entirely within the chloroplast, thereby
reducing energy demand by using less ATP, avoiding
the production of NH3 and releasing photorespired CO2

within the chloroplast in close proximity to Rubisco
(Figure 2) (Kebeish et al. 2007; Nolke et al. 2014; Dalal
et al. 2015).

The E. coli pathway converts glycolate to glyoxylate

using the three-subunit glycolate dehydrogenase.

Glyoxylate is then converted to tartonic semi-aldehyde,

by glyoxylate carboligase (GCL), which is then con-

verted to glycerate by tartonic semi-aldehyde reductase

(Figure 2). Of the published alternative photorespir-

atory pathways, this E. coli pathway has been tested

most extensively and has reported increases in

photosynthesis and biomass in several species, includ-

ing Arabidopsis, potato and camelina (Kebeish et al.

2007; Nolke et al. 2014; Dalal et al. 2015). However,

expression of the entire pathway appears not to be

required to observe improvements in plant perfor-

mance. Expression of glycolate dehydrogenase, alone,

has been observed to increase growth, revealing that

more work needs to be done to fully understand the

biochemical changes occurring in the leaf (Kebeish et al.

2007; Nolke et al. 2014; Dalal et al. 2015).
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A related pathway has been attempted in tobacco,
where expression of GCL and hydroxypyruvate isomer-
ase, in the peroxisome, was predicted to convert
glyoxylate to glycerate thus bypassing themitochondria
(Figure 2). However, hydroxypyruvate isomerase was
not successfully installed in the peroxisome and these
plants did not show a growth benefit (Carvalho et al.
2011). In addition, an alternative pathway not yet tested
in plants involves recycling glycolate without releasing
CO2, such as through the 3-hydroxypropionate path-
way, which converts glycolate to pyruvate in some
bacteria (Shih et al. 2014). More work will need to
be done to determine if either of these alternative
pathways to photorespiration could result in increases
in photosynthetic efficiency.

Another non-native photorespiratory pathway
tested in plants uses the glycolate oxidase pathway
intended to fully decarboxylate glycolate within the
chloroplast (Figure 2). This glycolate oxidase pathway
requires expression of the glycolate oxidase normally
expressed in the peroxisome, malate synthase to
convert glyoxylate to malate, and a catalase enzyme
because the conversion of glycolate to glyoxylate, by
glycolate oxidase, generates hydrogen peroxide as a
byproduct. In addition to confining all steps of glycolate
metabolism to the chloroplast, this alternative pathway
would theoretically increase the CO2 concentration
around Rubisco, thereby decreasing oxygenation re-
actions, which could result in increased biomass (Maier
et al. 2012).

Indeed, expression of the glycolate oxidase pathway
in Arabidopsis (Maier et al. 2012) led to increased
growth. However, this alternative pathway is expected
to expend more energy compared to the native
photorespiratory pathway (Xin et al. 2015) and fails to
return any P-glycerate to the photosynthetic carbon
reduction cycle, suggesting some alternative metabo-
lism not yet understood is at play (Maier et al. 2012;
Peterhansel et al. 2013).

To better assess how these alternative photo-
respiratory pathways could lead to an increase in
crop production, an engineering approach may be
necessary. With current rapid cloning techniques, such
as Gibson assembly and Golden Gate cloning (Engler
et al. 2009; Gibson et al. 2009), it is now possible to
clone entire biochemical pathways into a single
construct for single plant transformation. This could
lead to multiple up-front designs to test variations of

promoter gene combinations to optimize gene expres-
sion. In addition, multiple different enzymes could be
tested in the same pathway. For example, the E. coli and
the glycolate oxidase pathway both require the
conversion of glycolate to glyoxylate by different
means. The glycolate oxidase pathway may benefit
from an enzyme that does not produce hydrogen
peroxide as a byproduct, using an enzyme such as the
algal glycolate dehydrogenase or a recently described
glycolate dehydrogenase present in the mitochondria
of diatoms that can use electron acceptors other than
oxygen (Aboelmy and Peterhansel 2014; Schmitz et al.
2017). In addition, testing a variety of alternative
pathway designs maximizing flux through the alterna-
tive pathways can be accomplished by shutting down
the native photorespiratory pathway.

Modelling has suggested that an optimized E. coli

pathway could increase photosynthetic efficiency by

16%, as long as all the glycolate produced enters the

alternate path (Xin et al. 2015). Turning off native

photorespiration could be accomplished by either

targeted RNA interference or a gene editing approach.

It is also imperative to begin testing how alternative

pathways to photorespiration perform under agricul-

tural conditions. With the goal of increasing crop

productivity, field trials will need to be completed to

provide a proof of concept that this should also work in

crop species, similar to work on accelerating relaxation

of photoprotection and speeding up photorespiration

(Kromdijk et al. 2016; Lopez-Calcagno et al. 2018).

Altogether, the alternative pathways currently tested

are only a small fraction of the possible metabolic

pathways that could lead to improvements in photores-

piration. Further, it has become clear that fine-tuning of

gene expression, more active enzymes, and inducible

systems could be used to fully optimize photorespiration

under agricultural and environmental stress conditions.

FUTURE PROSPECTS IN ENGINEERING
PHOTORESPIRATION

Traditional genetic engineering (i.e., gene mutation and

single gene transformations) has been used in most of

the above-described approaches in manipulating pho-

torespiration. Recent advances in genome engineering

and synthetic biology (Liu and Stewart 2015; Patron
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et al. 2015; Fuentes et al. 2016; Patron 2016) are now

opening up new opportunities in altering photorespira-

tion. With the power of synthetic biology, it is now

possible to imagine a systems engineering approach to

conceptualize, design, build, and test a multitude of

ways to re-engineer photorespiratory metabolism, with

the goal of crop improvement.

Initial algorithms for in silico design of the alternative

photorespiratory pathways described above have been

tested (Xin et al. 2015). Modelling of projected improve-

ments suggested that the E. coli pathway could result in

increased photosynthetic efficiency and biomass, by as

much as 16%, especially if flux through the native

pathway is reduced or eliminated (Xin et al. 2015). In

addition, completely non-tested novel pathways can be

evaluated based on stoichiometric and kinetic models

of enzyme activity. Modelling manipulations to photo-

respiration also can provide unexpected results, such as

how changes in photorespiration could affect nitrogen

use, which is integral to the role of photorespiration

in maintaining photosynthetic efficiency during NH3

re-assimilation. Indeed, large scale computational

modelling projects have been created to better design

next generation crops (Zhu et al. 2016; Marshall-Colon

et al. 2017; Busch et al. 2018).

For computer modelling to be usefully predictive in
planta, more detailed characterizations of photorespir-
atory pathways are needed. Much of the work
describing the function of photorespiratory enzymes
comes from genetic mutation and in vitro enzymatic
assays (Somerville and Ogren 1982; Ogren 1984; Bauwe
et al. 2010; Peterhansel et al. 2010). Metabolic flux
analysis, in vivo, has long been an aspirational goal
toward a better understanding of photorespiratory
metabolism, especially in agriculturally important crops
and under field conditions (Rachmilevitch et al. 2004;
Zhu et al. 2007; Timm et al. 2012a; Xin et al. 2015; Timm
et al. 2016; Flugel et al. 2017).

With a deeper understanding of photorespiratory
flux, it will be possible to better determine how
manipulating photorespiration impacts other branches
of central carbon metabolism and secondary pathways
important for plant function. For example, photorespi-
ration is a large contributor to serine production in C3
plants and the photorespiratory pathway has been
implicated in abiotic and biotic stress responses, via a
role in reactive oxygen species (ROS) signaling (Fernie

et al. 2013; Timm and Bauwe 2013). In addition,
decreased rates of photorespiration, facilitated by
growth at elevated CO2, have been reported to exhibit
a negative feedback on nitrogen assimilation. Indeed,
plants can increase their rates of photosynthetic CO2

uptake when assimilating nitrogen, de novo, via the
photorespiratory pathway by fixing carbon as amino
acids in addition to carbohydrates (Bloom et al. 2018;
Busch et al. 2018).

Deeper understanding of the role of photorespir-
atory intermediates in other metabolic pathways and
determining how altered photorespiration will affect
plant growth and yield under different growth environ-
ments is needed. Although photorespiration is involved
in these aspects of plant metabolism, it is not clear if this
is essential for plant function, or a result of the
evolutionary pathway that led to the photorespiratory
cycle in land plants (Hagemann et al. 2016). It is well
known, for example, that under many conditions, C3
plants benefit from reduced, including full suppression,
of Rubisco oxygenation and subsequent photorespir-
atorymetabolism (Wheeler et al. 1996; Long et al. 2006).

Synthetic biology combines the principles of engi-
neering with molecular biology to provide the ability to
design and build biological parts. This ability to design
and build is beginning to make it possible to standardize
parts, similar to manufacturing principles, to quickly
assemble a wide variety of designs to be tested in
biological systems. The first set of standardized biologi-
cal parts were BioBricks designed primarily for the
engineering of prokaryotic organisms. Golden Gate and
GoldenBraid, as well as other similar cloning techniques
now provide standardized parts available for plant
synthetic biology (Norville et al. 2010; Engler et al.
2014; Liu and Stewart 2015;Marillonnet andWerner 2015;
Patron et al. 2015; Fuentes et al. 2016; Shih et al. 2016).

Limitations to engineering plants arises from the
complexity of specialized metabolites, complex ge-
nomes, and high degrees of regulation that result in
several unknowns in terms of predictability in manipu-
lation as well as from low transformation efficiency in
most crops of interest. Candidate gene discovery,
promoter analysis, and regulatory functions of pro-
moter elements are needed to optimize the design
portion of plant synthetic biology. One benefit to the
ease of design is the ability to generate a whole
metabolic pathway on a single construct with individual
promoter gene combinations.
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The use of many different promoters could prevent
homology-dependent gene silencing that can result
from repeated use of a constitutive promoter, after
multiple generations (Matzke and Matzke 1995; Meyer
and Saedler 1996; Matzke et al. 2002). In addition, this
upfront design could test a range of promoter strengths
without a priori knowledge of expression level pre-
dictions using phenotype as the selectable pressure in
optimized design. Once a desired phenotype is identi-
fied (e.g., decreased photorespiration stress and
increased plant growth), gene expression can be
correlated with phenotype. Using engineering cycle
principles and machine learning, the information
acquired from multiple rounds of optimization could
lead to phenotypes not necessarily achievable with only
a single round of the design, build, test, and learn cycle.

With the ability to generate large data sets, model
photorespiration in silico, and generate large libraries of
standardized parts, a systems approachmay be the best
tool for realizing increased crop productivity through
changes in photorespiration. The number of genome
annotated crops is increasing at a rapid pace (Matasci
et al. 2014). The increasing amount of genomic
information becoming available will provide insight
into the genetic diversity and potential plasticity of the
native photorespiratory pathway. This information can
then be used in engineering approaches. For example,
the peroxisomal glyoxylate cycle could convert glyox-
ylate to malate, as opposed to glycine, as a photo-
respiratory intermediate, which is proposed from in
silico analysis and select in vivo results (Davis et al. 2017).
Different environmental pressures may have also
induced evolutionary changes to photorespiration
that may be elucidated by expanding genomic data
and could drive changes in engineering strategies.

To fully understand how changes in photorespiration
affect plant growth, source/sink relationships in engi-
neered plants will also need to be examined. Potato
plants expressing part of the E. coli glyoxylate pathway
show increased tuber production (Nolke et al. 2014;
Ahmad et al. 2016) but, would this design translate into
increasedproduction inother root crops, suchas cassava,
or seed crops, such as soybean or cowpea? Itmay be that
optimization of alternatives to photorespiration will be
accomplished only on a species-specific basis.

In conclusion, current efforts to optimize photores-
piration have shown promising results. These concepts,
and potentially better options that can be achieved

through synthetic biology, will eventually need to be
moved from model organisms to target crops and
assessed under a range of relevant agricultural settings.
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