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A fundamental problem in meta-analysis is how to systematically
combine information from multiple statistical tests to rigorously
evaluate a single overarching hypothesis. This problem occurs in
systems biology when attempting to map genomic attributes to
complex phenotypes such as behavior. Behavior and other com-
plex phenotypes are influenced by intrinsic and environmental
determinants that act on the transcriptome, but little is known
about how these determinants interact at the molecular level. We
developed an informatic technique that identifies statistically sig-
nificant meta-associations between gene expression patterns and
transcription factor combinations. Deploying this technique for
brain transcriptome profiles from ca. 400 individual bees, we show
that diverse determinants of behavior rely on shared combinations
of transcription factors. These relationships were revealed only
when we considered complex and variable regulatory rules, sug-
gesting that these shared transcription factors are used in distinct
ways by different determinants. This regulatory code would have
been missed by traditional gene coexpression or cis-regulatory
analytic methods. We expect that our meta-analysis tools will be
useful for a broad array of problems in systems biology and
other fields.

honey bee | transcriptional regulation

Ahallmark of complex phenotypes is that they have many
different intrinsic and extrinsic determinants, and pheno-

typic variation between individuals is shaped by the interplay
between heritable genotypic factors and environmental con-
ditions (1). Understanding a complex phenotype, therefore,
requires knowing whether its different determinants are sub-
served by common or distinct molecular mechanisms. For a given
phenotype, do the multiple determinants act in fundamentally
similar or different ways?
Both intrinsic and extrinsic determinants influence phenotypes

through their effects on gene expression. For instance, intraspe-
cific behavioral differences between individuals are associated
with changes in the expression of hundreds to thousands of genes
in the brain (2). Also, manipulations of genetic, environmental,
and hormonal determinants of some of these behavioral differ-
ences can induce similar changes in gene expression (3). This
manipulation leads to the hypothesis that multiple intrinsic and
extrinsic determinants that influence the same behavior exert
shared effects on shared transcriptional regulatory mechanisms,
for instance, relying on the activities of the same sequence-spe-
cific transcription factors (TFs).
Testing this hypothesis poses serious challenges: transcrip-

tional mechanisms linking genes to behavior are not well-un-
derstood, and although it is increasingly common to obtain

transcriptomic profiles for a variety of determinants of a complex
phenotype, there is no existing tool that can directly test if spe-
cific cis-elements are activated in multiple transcriptomic states
in a statistically significant manner. Some existing tools (4–7)
have been widely used to search for associations in specific
transcriptomic states, but they are not designed for detecting
meta-associations across multiple states.
Here, we describe computational tools for identifying a statis-

tically significant relationship between single or combinations of
predefined cis-regulatory elements and multiple transcriptomic
states. These tools combine evidence of association with each
transcriptomic state into a single P value that reflects a recurring
role for the cis-element in those states. No existing tools provide
this functionality, although there are available methods for in-
tegrative analysis of multiple expression datasets. For example,
“biclustering” tools attempt ab initio discovery of “gene mod-
ules” that display coordinated expression across experiments (8,
9). Other tools additionally require these modules to have
common promoter motifs (10–12). These algorithms are faced
with a large space of potential modules that (i) makes finding the
best modules prohibitively slow and (ii) likely leads to loss of
statistical power because of the large number of hypotheses
tested. By contrast, our technique focuses on gene modules de-
fined by predetermined cis-elements and statistical evaluation of
meta-associations involving those modules. Its search space is
relatively small, enabling an exhaustive search for the best meta-
associations and keeping the extent of multiple hypothesis test-
ing at a relatively modest level. We deploy our tools to analyze
brain transcriptome profiles and promoter scans from ca. 400
individual honey bees, and we show that diverse determinants of
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behavioral maturation rely on specific, shared combinations of
transcription factors.
Behavioral maturation is a common feature in vertebrates

[including humans (13)] and social insects (14). Worker honey
bees do not grow up and reproduce, but they do grow up. They
perform brood care (nursing) and other tasks inside the hive for
the first 2–3 wk of adult life, then switch to foraging outside for
nectar and pollen (15). The age at onset of foraging is a major
maturational milestone in bee life, and it is determined by a va-
riety of genotypic and environmental factors (henceforth called
maturation determinants) (Fig. 1A) that act, in part, by inducing
differential expression of thousands of genes in the brain. For
example, some subspecies of honey bees mature faster than
others (16), whereas environmental determinants such as pher-
omones and nutrition also affect maturation (17) through
downstream endocrine and molecular processes (17, 18). Brain
transcriptome profiling of some maturation determinants has
been conducted previously (16, 19–22), revealing strong similar-
ities in their underlying brain gene expression profiles. However,
existing statistical methodologies are insufficient to infer whether
these maturation determinants act through shared transcriptional
regulatory mechanisms.

Results
Datasets and Initial Analysis. We studied brain transcriptome
profiles for ca. 400 individual honey bees. The profiles included
a comparison of nurses and foragers plus responses to 10 known
determinants of maturation. For simplicity, we refer to a total of
11 maturation determinants. Some profiles are presented here,
and others are from previously published microarray studies (16,
20, 21). These determinants relate to genotypic differences, en-
vironmental signals and cues, and manipulations of hormonal

and molecular pathways (Fig. 1A). Each maturation determinant
either speeds up or slows down behavioral maturation and was
associated with hundreds to thousands of differentially expressed
genes (DEGs) in the brain (Table S1); each determinant was
studied in sufficient numbers of bees to obtain robust P values
for the DEGs. We refer to the DEGs that are more highly
expressed in the faster or slower maturing bees in each experi-
ment as the “fast” or “slow” maturation genes, respectively.
Because all bees were sampled before foraging, the expression
differences could not be because of the effects of foraging per se,
which also have been shown (16, 23).
We first assessed the extent to which the 11 maturation

determinants cause shared changes in gene expression in the
brain. Most (41 of 55) pairs of determinants influenced signifi-
cantly more genes in common than expected by chance (Fig. S1),
providing initial support for a common basis to their effects on
behavior. We next asked if pairs of determinants also induced
correlated changes to the transcriptome. We measured the cor-
relation in expression fold changes between pairs of determi-
nants for each of 1,000 randomly sampled “bootstrap” gene sets,
each with 500 genes. We assumed pairwise correlations limited
to relatively few bootstrap sets reflect shared effects that are
localized to specific gene modules (24), whereas correlations that
are observed in most of the bootstrap sets more likely corres-
pond to shared effects encompassing much of the transcriptome.
Based on the above assumptions, a few pairs of maturation

determinants induced strongly correlated effects on gene ex-
pression that involved much of the transcriptome (Fig. 1B, solid
colors and Figs. S2 and S3). For example, bees from a genetic
strain artificially selected to store large amounts of pollen in the
hive (PH experiment) had brain gene expression profiles that
were very similar to the profiles of wildtype bees experimentally
deprived of pollen (Diet experiment). Both pollen-hoarding and
nutritionally deprived bees show accelerated behavioral matu-
ration (17, 25). This result suggests that selection for high pollen
hoarding resulted in genetic assimilation (26) of transcriptional
changes associated with the need for pollen and that the matu-
rational effects for this pair of inherited and environmental
determinants involve a shared transcriptional program.
By contrast, many pairs of maturation determinants induced

correlated effects detectable in relatively few bootstrap gene sets,
hinting at the existence of gene modules that are used by mul-
tiple determinants (Fig. 1B, stripes and Fig. S3). Surprisingly,
several of these pairs induced correlations in a direction opposite
to that predicted by their effect on behavior. For instance, Af-
ricanized honey bees initiate foraging at a younger age than bees
from European subspecies (27) (AvE experiment); a molecular
manipulation, Vg RNAi, also cause bees to forage at a younger
age (like Africanized bees) but causes brain transcriptome
responses more similar to European subspecies (18). This ob-
servation suggests that shared gene modules may be manipulated
in different ways by distinct maturation determinants.

Metalysis and cis-Metalysis. The above analysis did not reveal any
insights into the specific gene modules that may underlie the
common phenotypic effect of distinct maturation determinants.
To address this issue, we sought to identify biological features that
are shared by DEGs across many or all maturation determinants.
Surprisingly, we found that existing tools were not suitable for this
task (Discussion). We, therefore, developed a tool, called Met-
alysis, to test for statistically significant relationships between a
biological feature and multiple transcriptomic states. In a spe-
cialized version of this tool, called cis-Metalysis, the biological
features considered are defined by the presence of single or
combinations of cis-elements in gene promoters.
Metalysis can be used broadly to conduct meta-analyses of gene

expression data from multiple transcriptomic states, identify
gene properties that are correlated with expression in several

Fig. 1. Determinants of adult worker honey bee behavioral maturation and
their correlated effects on brain gene expression. (A) Bees switch from hive
work (primarily nursing brood) to foraging outside for nectar and pollen.
We studied the regulation of new and previously reported brain tran-
scriptomic differences between nurses and foragers and responses to 10
determinants of the timing of the age at onset of foraging (+ stimulating
or − inhibiting foraging onset; e.g., rich diet delays onset of foraging).
Previous studies also have characterized stimulatory (+) and inhibitory (−)
relationships among some of the maturation determinants themselves. For
genetic comparisons (AvE, LvM, and PH), the first genotype shows faster
maturation than the second one. AvE, Africanized vs. European subspecies;
BP, brood pheromone; cGMP: cyclic-guanosine monophosphate treatment;
diet, rich vs. poor diet; JHA, juvenile hormone analog treatment; LvM,
Northern (A. mellifera mellifera) vs. Southern European (A. mellifera lig-
ustica) subspecies; Mat, maturation (nurses vs. foragers); Mn, manganese
treatment; PH, high vs. low pollen-hoarding genetic strains; QMP, Queen
Mandibular Pheromone; Vg, vitellogenin RNAi (details in Table S1). (B) Pairs
of maturation determinants with effects on gene expression that were
correlated in a direction consistent with their shared effects on behavior
(green) or opposite to their effects on behavior (red) across most (solid
colors) or relatively few (stripes) bootstrap gene sets.

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1205283109 Ament et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205283109/-/DCSupplemental/st01.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205283109/-/DCSupplemental/pnas.201205283SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205283109/-/DCSupplemental/pnas.201205283SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205283109/-/DCSupplemental/pnas.201205283SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205283109/-/DCSupplemental/pnas.201205283SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205283109/-/DCSupplemental/st01.doc
www.pnas.org/cgi/doi/10.1073/pnas.1205283109


transcriptomic states, and quantify the statistical significance of
such meta-associations. The inputs to Metalysis are (i) a matrix
with information on DEGs, indicating which genes are up- or
down-regulated in each of several experiments, and (ii) a matrix
of gene annotations, listing which of several different annota-
tions (biological properties) apply to each gene. Each annotation
type defines a gene set (i.e., genes that have that annotation).
Given the lists of DEGs from multiple studies and an annota-
tion-based gene set, Metalysis tests the association between that
gene set and the DEGs from each study, and it combines the P
values from these tests into a “meta-P value for the aggregate of
all tests (we compare this statistic with related tests and proce-
dures in Discussion and empirically show its advantages in
Methods). The meta-P value is a newly designed statistic that can
reveal meta-associations involving many moderately significant P
values as well as those meta-associations involving a few highly
significant P values. Metalysis uses empirical extreme value dis-
tributions (EVDs) to eliminate weak meta-associations, which
controls for the effects of multiple hypothesis testing. Thus,
Metalysis combines the common practice of testing for associa-
tions between gene sets (4–7) with an intuitive and powerful
statistic that aggregates statistical evidence from multiple tests.
cis-Metalysis is specially designed for meta-analysis at the level

of cis-regulatory elements in gene promoters. It first scans pro-
moter regions to define “motif modules” [i.e., sets of genes with
promoters that all contain the same cis-regulatory sequence
pattern (motif) recognized by a specific TF (Methods)]. Here, the
term promoter is used loosely to refer to the 5-kbp region up-
stream of the gene, not only the “core promoter” (28) (Discus-
sion). cis-Metalysis then searches for meta-associations between
each motif module and lists of DEGs from multiple experiments
(Fig. 2A) (Methods) using the same meta-analytic approach as
Metalysis. In fact, this functionality of cis-Metalysis is equivalent
to using Metalysis with the input gene annotations being based
on motif presence in promoters. However, cis-Metalysis is capa-
ble of greater flexibility in its search for meta-associations. For
instance, it also tests motif modules defined by logical combina-
tions of multiple motifs. Moreover, it can be configured so that
different logical combinations of the same motifs can be associ-
ated with DEGs in different experiments, therefore offering a
flexible model of regulatory mechanisms shared by multiple tran-
scriptomic states. This flexibility (explained in detail below and
Methods) and the powerful statistical framework of Metalysis
lead to the broad applicability of cis-Metalysis. Figs. S4 and S5
and Table S2 show an illustrative application of cis-Metalysis to
an entirely different topic, regulatory changes underlying cancer.

Metalysis and cis-Metalysis Reveal Common Transcriptional Regulatory
Basis for Multiple Determinants of Behavioral Maturation. We used
Metalysis to explore the gene modules underlying behavioral
maturation. We first used Metalysis in conjunction with Gene
Ontology (GO) annotations, revealing biological processes that
were enriched in brain transcriptomic responses to as many as 8
of 11 maturation determinants (Fig. 3A). We only examined
meta-associations with EVD P value ≤ 0.05, which means that, in
a carefully constructed negative control (Methods), there is less
than a 5% chance of finding any meta-association as strong as
the examined ones. These meta-associations included processes
occurring in the brain related to macronutrient and energy me-
tabolism (translation, mitochondrial electron transport, and
glycolysis), neuronal plasticity (synaptic transmission and ner-
vous system development), and stress responses (protein folding
and response to heat). All of these biological processes had
known associations with particular individual maturation deter-
minants (29–31), but our results suggest that they actually are
driven in common by many determinants. This finding suggested
to us the hypothesis that multiple maturation determinants
operate through the actions of a common set of TFs.

We used cis-Metalysis to test this hypothesis using 602 pre-
viously characterized motifs from vertebrate and Drosophila
databases. Because transcriptional regulation in many biological
contexts involves combinatorial interactions between TFs, we
used multiple modes of cis-Metalysis to test both simple and
complex models of regulation, which is described next (Fig. 2B).
In our analysis, we tested meta-associations involving individual
motifs or motif pairs, although cis-Metalysis can be used to ex-
amine all k-tuples of motifs for a user-defined k.
Single motif and identical logic modes. We first used cis-Metalysis to
test the hypothesis that maturation determinants use regulatory
rules that are identical across many or all conditions. In the
single motif mode, cis-Metalysis defines a motif module as the
set of genes with promoters that have matches to a motif and
then tests for a meta-association involving this motif module, just
as the GO gene sets were tested above. In the identical logic
mode, the motif module is defined by a logical combination of
the presence and/or absence of two motifs (e.g., motif A and not
motif B) in promoters. These simple regulatory rules were
shared by the responses to some, but not all, of the maturation
determinants. The most significant meta-associations involving
single motifs (EVD P value < 0.01) (Fig. 3B) spanned four to six
determinants and were often bidirectional. This finding means
that most of the 22 individual motifs reported here do not con-
sistently predict fast vs. slow maturation. In fact, when we con-
figured cis-Metalysis to only seek unidirectional meta-associations,
a much smaller number of motifs was reported at the same sig-
nificance threshold (Fig. 3B, asterisks). Similarly, meta-associa-
tions involving combinations of two motifs interacting with
identical logic spanned no more than 4 of 11 determinants (Fig.
S6). These results suggest that more complex regulatory logic may
be required to explain the shared effects of maturation determi-
nants on behavior; this suggestion proved to be true, which is seen
in the next analysis.
Role-consistent logic mode. Allowing for greater complexity in the
combinatorial action of TF pairs revealed shared regulatory logic
across most or all maturation determinants. We characterized
higher-complexity regulatory rules by using cis-Metalysis in its
role-consistent logic and flexible logic modes. In the role-con-
sistent logic mode, cis-Metalysis tests if a motif pair is associated
with multiple determinants, but unlike the identical logic mode,
the motif module associated with differential expression can vary
from one determinant to another, and is not defined by a pre-
determined logical combination. Thus, a module defined by the
presence of motif A and absence of motif B may be associated
with fast maturation genes of one determinant, whereas a mod-
ule defined by the presence of motif B and absence of motif A is
enriched in slow maturation genes of a second determinant.
However, the role consistency requirement mandates that, if
a motif’s presence associates with fast maturation genes in one
experiment, its presence cannot be associated with slow matu-
ration genes in a second experiment. In the above example, an
association of a module defined by the presence of both motifs
A and B with fast maturation genes of a third determinant
will not be considered for combining with the two mentioned
associations.
This role-consistent logic mode revealed pairs of motifs that

were associated with differential gene expression for as many as
10 determinants (Fig. 4A). In contrast to the simpler rules above,
these rules necessarily predict unidirectional responses—each of
the implicated TFs is predicted to function consistently to either
speed up or slow down maturation. We note that the increased
complexity of possible meta-associations is accounted for when
EVD P values are computed, and therefore, it is not obvious
a priori that more complex combinations will show more widely
shared associations.
The motif combinations identified by the role-consistent logic

mode featured cis-regulatory sequences recognized by TFs that
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are well-known as regulators of neuronal plasticity (Creb) (32),
stress responses [Xbp1 (33) and dl, the Drosophila homolog of
NF-κB (34)], and juvenile hormone (JH) signaling (broad) (35).
JH is known to mediate the effects of both genotypic and envi-
ronmental maturation determinants (16, 17) (Fig. 1A). In-
triguingly, the discovered cis-regulatory rules often paired these
regulators and other well-known regulators of behavior and
physiology with additional TFs (e.g., Ets) that have not pre-
viously been associated with behavior (Fig. 4B). This analysis,
therefore, suggests that combinations of known and previously

unknown regulators of behavior are shared across many or all
maturation determinants.
Flexible logic mode. This mode, like the role-consistent logic mode
above, tests for meta-associations for a motif pair while allowing
their specific logical combination to vary from one determinant
to another; however, the role consistency requirement is elimi-
nated now. With this greater flexibility, cis-Metalysis reported
meta-associations spanning all 11 determinants (Fig. S7). These
meta-associations predict that the same pair of motifs is involved
in the responses to all of the determinants, but the roles of

Fig. 2. Informatics techniques for the discovery of meta-associations across transcriptomic experiments. (A) Flowchart for cis-Metalysis. Steps 1 and 2: Motif
modules are defined based on the presence (green cells) of single motifs (e.g., M1) or their Boolean combinations (e.g., M1 and M2) in the 5-kb promoter
sequences of each gene. Steps 3 and 4: Sets of up- (orange) and down- (blue) regulated genes are identified from experimentally profiling gene expression for
each determinant. Step 5: Statistical enrichments are tested between motif modules and expression sets producing all of the association P values (shaded cells)
that are combined by cis-Metalysis. In its most flexible mode (shown), cis-Metalysis combines the best P value (bordered in yellow) from each determinant
when considering all combinations of motifs. Step 6: Meta-P value calculation. Top shows the best association P value from each condition (D1 . . . D4). For each
K = 1 . . . 4, the statistic ϕK combining the best K P values is computed and translated to a P value P(ϕK) in Middle. The minimum P(ϕK) over all K is the meta-P
value (highlighted in yellow within the red border) and considers the number and strength of the combined P values. The meta-association is represented in
Bottom with selected significant conditions colored and the remaining conditions in gray. (B) Multiple modes of cis-Metalysis enable discovery of simple or
combinatorial identical or plastic forms of regulatory logic shared across transcriptomic states (conditions) by selecting specific subsets of association P values
to combine. For each mode, an example subset of associations (shaded cells) and the selected best P values (bordered in yellow) are depicted. In single motif
cis-Metalysis, P values are selected from the association tests with the gene modules defined by a single motif (M1). In the identical logic configuration,
a rigidly defined combination of two motifs (!M1 and M2 in this example) defines the gene module that is tested for association with a fixed direction of
regulation (down). In role-consistent and flexible cis-Metalysis, a meta-association of a motif pair (M1 and M2) is allowed to use different Boolean combi-
nations of the two motifs and different directions of regulation in different determinants. In role-consistent mode, each motif–expression association must
use a particular motif in the same role (activator or repressor); here, M1 is an effective activator, and M2 is a repressor. This constraint is relaxed in flexible cis-
Metalysis (example in A, Step 5).
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specific TFs with respect to maturation seem to vary among
determinants. One such meta-association featured a bHLH
motif (USF) paired with a motif bound by mtTFA (Fig. 4C),
which regulates mitochondrial function (36). This finding rein-
forces our finding above (Fig. 3A) that mitochondrial functions
such as energy metabolism are influenced by most or all matu-
ration determinants and proposes mtTFA regulation, combined
with a bHLH TF, as part of the underlying mechanism. This
combination and 16 other motif combinations (involving 20 TFs
overall) (Fig. S7) were found to be associated with all 11
determinants, with meta-associations having an EVD P value <
2E-16. These results are the most statistically significant among
all results produced by cis-Metalysis, but they are intriguing in
their use of the same TFs with switching functional roles.

Comparisons Between cis-Metalysis and Biclustering Tools. A popu-
lar approach to analyze expression data from multiple experi-
ments is to solve the so-called biclustering problem, which is to

find subsets of genes and experiments such that the chosen genes
are coordinately expressed in the selected experiments. After
such a coexpressed gene set has been discovered, it is common to
test for cis-elements overrepresented in their promoters, there-
fore inferring meta-associations between cis-elements and the
selected experiments. To test this strategy, we applied the BiMax
tool (37) to find biclusters across the 11 maturation determi-
nants. About 500 biclusters were discovered, each including at
least five genes and spanning at least three determinants. The
genes in each of these biclusters were then tested for enrichment
of motifs in our collection of 602 motifs as well as every logical
combination of motif pairs. The top five motif–bicluster associ-
ations are shown in Fig. S8A with their P values. We then re-
peated the entire analysis 50 times on randomized datasets
exactly as described for Metalysis to obtain empirical EVD P
values that correct for multiple hypothesis testing. Fig. 3C shows
the empirical EVD [i.e., the top P value (blue ticks) from each of
the 50 negative controls]. We see that even the smallest P value

Fig. 3. Meta-associations between GO terms, cis-regulatory motifs, and genotypic, environmental, and physiological determinants of honey bee behavioral
maturation. (A) Meta-associations reported by Metalysis between maturation determinants and GO biological processes, with EVD P value ≤ 0.05. The EVD P
value for each meta-association is based on comparing its meta-P value to the smallest meta-P values returned from each of many randomization tests
(negative controls). Orange and blue cells indicate the individual maturation determinants contributing to a meta-association; orange and blue denote
associations with genes up-regulated in the fast maturation and slow maturation conditions, respectively. (B) Meta-associations (at EVD P value ≤ 0.01)
revealed by single motif cis-Metalysis (Upper) and subjection of SAMBA biclusters to single motif enrichment tests (Lower). No significant meta-associations
were discovered using BiMax biclusters. Asterisks denote motifs reported by cis-Metalysis (at EVD P value ≤ 0.01) when configured to search only unidi-
rectional meta-associations. (C, Top) The best meta-associations (red ticks) between cis-regulatory motifs and determinants were much stronger than the best
found in many randomized datasets (blue ticks; best-fit γ-distribution shown as the blue curve). Each blue tick represents the strongest meta-association in
a distinct (randomized) dataset. Same plots for the results from BiMax (C, Middle) and SAMBA (C, Bottom) biclusters subjected to motif enrichment tests.
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from the original dataset (red tick) is not statistically significant
after multiple testing correction, with an EVD P value of 0.053.
A similar examination using cis-Metalysis (Fig. 3C) reveals 22
meta-associations that are to the right of the entire empirical
EVD and have EVD P values ≤ 0.01. We also observed a relative
lack of statistically significant meta-associations in the BiMax
analysis for combinations of motifs (Fig. S8B).
We repeated the above analysis with another biclustering tool

called SAMBA (9). Here, we used the fold-change values of
genes, rather than their discretization into one of three catego-
ries (up, down, or neither). Twelve biclusters were discovered
and then subjected to motif enrichment tests and multiple hy-
pothesis corrections. Only two associations were found to have
empirical EVD P value ≤ 0.01 (Fig. 3 B and C and Fig. S8 C and
D); again, this is a much smaller number of associations than
discovered by cis-Metalysis at the same significance levels.

Discussion
Biological Significance. With a set of 10 known intrinsic and ex-
trinsic determinants, behavioral maturation in honey bees pro-
vides a compelling example of the challenge of elucidating the
underlying transcriptional architecture of a complex trait. Our
results present a striking view of the combinatorial cis-regulatory
code underlying behavioral maturation. We found 16 meta-
associations, involving 20 cis-regulatory motifs, that spanned all
determinants but only when we considered pairs of motifs that
varied in the ways in which they are predicted to interact with each

other. These results suggest that many different maturation
determinants use the same TFs to exert common effects on be-
havior but that different determinants use some of these TFs in
distinct ways. Those TFs that showed role-consistent patterns of
association across the determinants might be involved in speeding
up or slowing down behavioral maturation, whereas those TFs
that showed bidirectional patterns of association might play a
more general role in neural and behavioral plasticity.
Our results go beyond prior demonstrations of the strong re-

lationship between behavioral plasticity and brain gene expres-
sion (2, 3, 16, 29, 38), and they hint at considerable complexity in
the ways in which the same TFs interact with each other to in-
fluence gene expression. Our findings also show that diverse
determinants can exert common influences, at least in part, by
shared transcriptional mechanisms that involve a relatively small
number of TFs. We focused on finding only the most robust
associations involving only known cis-regulatory motifs, and
therefore, the complete transcriptional regulatory network un-
derlying behavioral maturation in honey bees is likely consider-
ably more complex.
Our results suggest hypotheses for specific TFs as regulators of

behavioral maturation, including those TFs with established
roles in neuronal plasticity, stress responses, hormonal signaling,
and metabolism. However, assignments of specific TFs to the cis-
regulatory motifs identified in our analyses are limited by the fact
that a single motif is often recognized by multiple TFs, and
therefore, roles for TFs implicated by our analyses must be

Fig. 4. Combinatorial regulation of maturation-related gene expression. (A) Top three most significant meta-associations between maturation determinants
and pairs of motifs that interact with role-consistent logic. Motif module–gene expression associations with fast maturation and slow maturation genes in
each experiment are denoted by orange and blue, respectively. Role-consistent meta-associations of motifs with fast and slow maturation are indicated by
green and red, respectively. For example, the third row indicates that the presence of the Dl motif and absence of the ETS motif are together associated with
fast maturation genes in the QMP, Mat, BP, AvE, LvM, and JHA experiments, whereas the presence of the ETS motif and absence of the Dl motif are associated
with slow maturation genes in the Mn, diet, Vg, and cGMP experiments. (B) Combinations of motifs recognized by the TFs Dl, Xbp1, and ETS are associated
with fast and slow maturation, respectively, and together, they predict gene expression patterns across all 11 maturation determinants. A wiring diagram
shows the most significant combination of motifs for each determinant. “And” and “not” logic gates are depicted by rounded rectangles and triangles,
respectively. (C) Combinations of motifs recognized by mtTFA and USF are associated with the responses to all 11 maturation determinants, with each motif
bidirectionally associated with up- and down-regulated genes in different experiments. Same notation as in B.
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confirmed by experimental manipulations. However, several of
the TFs identified by cis-Metalysis also were implicated as high-
level regulators of maturation-related gene expression in a bee
brain transcriptional regulatory network reconstructed from
some of the same gene expression datasets used here. These TFs
include Creb, br, dl, Xbp1, and others (22), and they, thus, are
particularly promising candidates for functional characterization
in future experiments. We recently showed a functional role in
behavioral maturation for ultraspiracle (39), a JH-related TF with
a cis-regulatory motif that is enriched in the promoters of many
maturation-regulated genes expressed in the brain (19), showing
the use of cis-regulatory analysis in predicting regulators of
bee behavior.
Our findings may reflect a significant theme in the regulation

of complex phenotypes. The fact that multiple determinants of
the same phenotype use common regulatory components is not
surprising, and it is reminiscent of the diverse mechanisms for
segmentation from flies to vertebrates, all of which rely on
a common toolkit of regulatory genes (40). Less appreciated is
the possibility that these common components may be wired
differently in the different regulatory networks, reflecting the
different adaptive forces that shaped the evolution of each of
those networks and posing significant challenges to characteriz-
ing an underlying regulatory code for the phenotype.

Methodological Significance and Limitations. It seems that, despite
the substantial literature on meta-analysis of transcriptomic
experiments, there has been no rigorous treatment of the fol-
lowing intuitive task: determine if a given gene module shows
significant statistical association with a differentially expressed
gene set in all or most of several datasets. The Metalysis tool
enables us to perform this task with rigorous statistics given any
number of predefined gene modules, whereas cis-Metalysis
extends this functionality to accommodate flexible combinations
of modules.
An important contribution of our work is that we formulated

a basic challenge of meta-analysis—combining a set of P values
from multiple tests—in an intuitive way and solved the formal
problem analytically. This statistic has important technical
advantages for the meta-analysis problem addressed here com-
pared with alternatives such as the Fisher combined probability
test used in previous studies (41–43). For instance, the meta-P
value statistic that we propose is better suited to situations where
only a subset of the multiple P values being aggregated provides
evidence against the null hypothesis. We believe that our meta-
analysis tools will be useful for a broad array of statistical
problems in systems biology and other fields.
We solved a fundamental statistical problem in meta-analysis,

built on it to develop informatics tools that analyze sequence and
expression data, and used these tools to reveal a flexible cis-
regulatory code underlying a complex phenotype. We used a meta-
analytic strategy where multiple assays of the same experimental
condition are analyzed first and gathered robust information on
differentially regulated genes of that condition, and this information
is then integrated across multiple conditions. Prior applications of
this strategy (12, 44, 45) were mostly devoted to finding a core set of
genes with coordinated expression in multiple experiments (41,
46–50). In contrast, our approach bears on a more fundamental
notion of what is shared across multiple transcriptomic responses—
not a list of common genes but a common biological process or
a common regulatory logic. This idea was mentioned in the work by
Subramanian et al. (7), which used Gene Set Enrichment Analysis
(GSEA) to discover that the same gene sets were associated with
two separate transcriptomic profiles of lung cancer. However, this
observation was made anecdotally, and GSEA does not provide
a way to quantify such meta-analytic observations.
Our work has some similarities to biclustering, which is an

existing technique to analyze transcriptomic data from multiple

experiments and studies. It typically involves ab initio discovery
of a subset of genes and a subset of conditions that show strong
association with each other. Such a gene set can then be sub-
jected to functional characterizations (e.g., by examining its en-
richment for GO terms, protein-protein interaction network
colocalization, or even promoter motifs) (8–10). Biclustering-
based approaches first find a core gene set activated in multiple
transcriptomic states and then test for associations with pre-
defined modules. Our approach switches the order of the two
operations: modules are tested for association with each exper-
iment first, and this information is then aggregated in the second
meta-analytic step. This approach has several advantages. (i) It is
a more direct way to search for meta-associations, because it
skips the challenging step of finding a core gene set common to
many transcriptomic states and instead sets up the meta-analysis
as a well-defined and efficiently computable task of combining P
values from multiple experiments. (ii) Evaluations of the statis-
tical significance of biclusters (e.g., using extreme value dis-
tributions) are often difficult because of a large search space.
Our strategy of testing meta-associations only for specific gene
modules reduces the search space drastically, thus promising to
provide greater statistical power. (iii) Our approach allows us to
define meta-associations with much greater flexibility than the
biclustering-based strategy. In particular, cis-Metalysis can test
different logical combinations of the same motif pair for their
association with different transcriptomic states when inferring
a meta-association for that motif pair. This flexibility, which is
crucial if the shared molecular mechanisms are themselves
plastic, is not allowed in the biclustering-based approach. We
believe that these are some of the reasons why cis-Metalysis was
able to find more meta-associations than BiMax and SAMBA-
based approaches.
A variant on the biclustering theme in meta-analysis strategies

is the variant of integrative biclustering, where genes in a
bicluster are required to be not only coordinately expressed but
also show enrichment of other annotations such as motif pres-
ence. Tools in this genre such as cMonkey (10), Coalesce (12),
and Allegro (11) integrate the two steps mentioned above: as-
sessing the coexpression of gene sets and testing motif module
enrichment in those gene sets. These tools, like other bicluster-
ing tools, are designed for ab initio discovery of biologically
meaningful gene modules rather than testing for meta-associa-
tions involving predetermined modules, which is our goal. As
such, they are likely to have less statistical power if subjected to
rigorous multiple hypothesis correction. Because of the expo-
nentially large space of potential biclusters, these tools rely on
heuristics that may miss the best biclusters. Moreover, these
three tools rely on ab initio motif finding to improve the quality
of reported biclusters, and they do not provide the means to test
hypotheses about known motifs and combinations thereof. This
finding is important for metazoan genomes, where ab initio motif
discovery, especially without comparative genomics, is prob-
lematic and to a large extent, can be replaced with the use of
databases of experimentally characterized motifs (Table S3).
Our approach has some parallels to the approach in the work by

Segal et al. (24), where reported gene modules exhibit associations
with several transcriptomic states (cancer types) that have a com-
mon annotation (e.g., metastatic cancer). However, their approach
requires a priori annotation of the transcriptomic states into two
categories and thus, cannot be used to reveal meta-associations in
a framework such as the one described here. Moreover, it uses
meta-analytic statistics that count the number of significant asso-
ciations at an arbitrary threshold as opposed to Metalysis, which
integrates the strengths and number of associations without im-
posing thresholds. Also, their approach does not report gene
modules representing combinatorial cis-regulatory codes.
A potential limitation of our work is that cis-regulatory anal-

ysis was based on analysis of promoter regions, whereas regula-
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tory information in metazoa is frequently located more distally
(51). We note, however, that our definition of a promoter is the
region 5 kbp upstream of a gene, which is expected to include
a substantial fraction of regulatory elements. In a genome where
additional clues about regulatory locations, such as DNA ac-
cessibility and cofactor binding, are available, one may be able to
scan more comprehensively for motif matches. Here, we made
a practical tradeoff between sensitivity and specificity by focusing
on 5-kbp promoters. We also note that cis-Metalysis may be run
with any definition of the sequence space, not just the particular
choice that we used here. Another point of future improvement
is the completeness of the motif collection used. We have relied
on multiple sources of experimentally and computationally pre-
dicted motifs (from Drosophila and vertebrates) to build a com-
prehensive motif collection. Nevertheless, a large number of
relevant motifs are likely not known, and future high-throughput
characterization of TF motifs will improve the sensitivity of our
approach. We have used cis-Metalysis to be able to efficiently
explore a large motif collection and detect and appropriately
handle redundant pairs of motifs, which are expected to arise
more frequently in a larger collection. Finally, we anticipate that
future versions of our approach will incorporate information
about TF expression levels when predicting regulatory roles for
motifs. The work by Chandrasekaran et al. (22) has reported on
such an analysis, where TF–gene interactions were predicted
based on expression data alone; an integration of that approach
(22) and our sequence-based approach is the logical next step for
honey bee behavioral maturation, which has been done for
Drosophila development (52).

Methods
Maturation Determinants. We profiled brain gene expression for naturally
occurring behavioral differences between young and old Apis mellifera
honey bees [nurses vs. foragers; maturation (20)], genotypic comparisons
between subspecies and artificially selected strains [Africanized vs. European
subspecies (AvE), Northern (A. mellifera mellifera) vs. Southern European (A.
mellifera ligustica) subspecies (LvM), and high vs. low pollen-hoarding ge-
netic strains (PH)], social and nutritional environmental determinants [brood
pheromone (BP) (20), Queen Mandibular Pheromone (QMP) (21), and diet],
and hormonal/molecular manipulations [vitellogenin RNAi (Vg), juvenile
hormone analog treatment (JHA) (16), manganese treatment (Mn) (16), and
cyclic-guanosine monophosphate treatment (cGMP) (16)]. All of these fac-
tors have been shown previously to influence the timing of maturation.
Datasets listed with a reference were published previously. Details are pro-
vided in Table S1.

Sample Processing and Microarrays. Brain gene expression profiling was per-
formed using a 70-mer oligonucleotide spotted microarray (20), with 13,440
unique experimental probes (Mat, AvE, LvM, PH, BP, diet, and Vg) or a cDNA
spotted microarray (16), which assayed a total of 5,736 genes (QMP, JHA, Mn,
and cGMP) with 4,662 genes matching a feature on the oligo array. Features
from the two platforms were considered to match if they bothmapped to the
same Official Gene Set 2 (derived from the honey bee genome sequencing
project) (53) gene model or if they mapped to overlapping regions outside
an Official Gene Set 2 model. We profiled expression from individual brains
(10–20/group) on the oligo array and material pooled from several brains on
the cDNA array. Studies were implemented as loop designs, each with 20–200
arrays. Experimental procedures for cDNA microarrays and oligo arrays were
as described (16, 20). Briefly, partially lyophilized, frozen brains were dissected
out of head capsules. RNA extracted from individual or pooled brains (RNeasy;
Qiagen) was subjected to one round of linear amplification and labeled with
fluorescent dye (Cy3 or Cy5) using the Amino-Allyl Message AmpII kit
(Ambion) or the Message Amp II kit combined with a Universal Labeling
System (Kreatech). Slides were scanned with an Axon 4000B scanner, and
images were analyzed with GENEPIX software (Agilent Technologies).

DEGs. Statistical analyses of differential gene expressions were performed
as in ref. 20. Genes abundantly expressed in hypopharyngeal glands (a po-
tential source of tissue contamination in brain samples) were filtered before
analysis. A Loess transformation was performed using the software program
Beehive (http://stagbeetle.animal.uiuc.edu/Beehive) to normalize expression

intensities. A linear mixed effects model implemented by using restricted
maximum likelihood was used to describe the normalized log2-trans-
formed gene intensity values, including the effects of experimental vari-
ables, dye, bee, and microarray. Effects were evaluated with an F-test
statistic, and the P values were adjusted for multiple hypothesis testing by
using a false discovery rate (FDR) criterion. We studied DEGs that were
significant at FDR < 0.05.

Meta-P value. Let a given set of P values from n independent tests be
denoted, in ascending order, by {p(i)}. For each k ∈ [1. . . n], we compute
(Eq. 1)

ϕk ¼ 1− ∏
k

i¼1

�
1−pðiÞ

�
[1]

and its P value P(ϕk) conditional on the fact that the k smallest P values were
chosen from a set of n. Note that ϕk ∈ [0, 1] is a combination of the k p(i)
values that assumes a low value only if every p(i) is small. A significant P
value of this statistic, thus, corresponds to a situation where all of the in-
dividual p(i) values are low to an extent that is unlikely to happen by ran-
dom chance. We call mink (P(ϕk)) the meta-P value corresponding to {p(i)}.
We consider the minimum among all P(ϕk) values, because we want to allow
for a subset of the tests to carry evidence against the null hypothesis but do
not know a priori the number of tests. Computing P(ϕk) involves a newly
derived analytical calculation given by (Eq. 2)

Prðϕk ≤ τÞ ¼ 1−
Z1

0

�
n

k þ 1

�
ðk þ 1Þð1− tÞk tn−kþ1Aðt; k;1− τÞdt; [2]

where A(t,k,x) is a function with a calculation that was provided in the work
by Dettmann and Georgiou (54) (SI Methods). Calculation of the meta-
P value and previous work on the problem (46) assume that the combined
P values come from independent tests. In practice, this assumption may be
violated; however, the EVD P value calculation outlined below addresses
this issue.

Metalysis. Inputs to this program are (i) a gene setM (for example, defined by
a shared biological feature such as a GO annotation or motif presence) and
(ii) for each experimental condition Ci, annotation of subsets of genes that
are up- or down-regulated (Gi,+ and Gi,−, respectively) in that condition. The
steps are (i) calculate P values of a Hypergeometric test of association be-
tweenM and Gi,+ and between M and Gi,−, respectively, (ii) select the lower
P value pi for each condition Ci,, and (iii) compute the meta-P value from the
resulting {pi} as the significance of meta-association between M and the set
of conditions.

In future implementations ofMetalysis, we will allow for testing individual
associations between M and Gi,* using alternative procedures [e.g., GSEA (7)
or other available tests (4, 55)]. There are two main reasons why the current
implementation uses Hypergeometric tests after discretizing the expression
information on each gene into one of three categories (up- or down-regu-
lated or neither). First, in our application, this expression information is
obtained from multiple biological replicates (bees), providing us with a P
value for differential expression. This finding naturally leads us to work with
genes with P values that are significant at some predetermined level, but it
does not offer an equally rigorous way to choose an expression fold-change
value that is representative of all replicates. Second, we noted that different
transcriptomic studies often choose different methodologies to estimate
expression levels, but almost all of these studies finally report lists of dif-
ferentially regulated genes for additional analysis. Therefore, a meta-anal-
ysis framework with a starting point of sets of DEGs is likely to be more
widely useable by the community.

Multiple Hypothesis Correction. Because the procedure is repeated for each
given gene module M and because step ii amounts to performing two tests
for each Ci, a multiple hypothesis correction is required. We, therefore, re-
peated the entire analysis for a randomized dataset where the matching
between genes and promoters has been permuted randomly (SI Methods)
and noted the smallest P value reported by Metalysis. Repeating this exercise
many times, we constructed an empirical EVD of meta-P values, which pro-
vides an EVD P value corresponding to each meta-P value in the original
dataset. The last step uses a γ-distribution fit to the empirical EVD, which has
been reported previously in the context of ab initio motif discovery tools
(56). We use the EVD P value for multiple hypothesis correction in Metalysis,
because our goal in the present study was to obtain only the most reliable
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meta-associations. Alternative deployments of the software may choose to
use the less-conservative FDR approach (57).

Comparison of Meta-P Value with Previous Work. Prior work has examined the
problem of combining P values from multiple tests of the same hypothesis
(58), the most popular approach (41, 52) being Fisher’s combined probability
test, which uses the statistic (Eq. 3)

χ2F ¼ −2 ∑
n

i¼1
ln pi : [3]

This method is meant to test the significance for the aggregate of a number
of independent tests, which is also the motivation for the meta-P value that
we propose. However, unlike the Fisher method and other approaches to
the same problem (59, 60), our method provides a composite test in the
scenario where only a subset of the combined tests carries evidence against
the null hypothesis. Moreover, the statistic ϕk and thus, the meta-P value is
designed to be most sensitive to the largest of the k best P values, similar to
the Pmax statistic of ref. 61 and unlike the Fisher method, which is most
sensitive to the smallest P value. In Figs. S9 and S10, we perform a compar-
ison between Fisher’s method and our meta-P value in terms of their ability
to score meta-associations on synthetic as well as real sets of P values. We
noted that the meta-associations retrieved from our datasets based on the
meta-P value were more diverse than those meta-associations based on the
Fisher method (Fig. S9) (e.g., they included more cases where only 2–4 of the
11 P values combined were individually significant and more cases where all
11 P values were individually significant). In positive control experiments
where we artificially simulated 11 tuples of P values (Fig. S10), we found the
meta-P value to correlate better with the strength of the meta-association
that was used in the simulation procedure. Finally, we note that the Fisher
combined test (or our meta-P value) can also been used to detect if at least
one of the tests can reject its null hypothesis [i.e., as a family-wise error
control procedure akin to the family-wise error rate (FWER)] (62); however,
this detection is not the motivation for our work. The meta-P value is not
intended to be a multiple hypothesis correction procedure—its goal is to
aggregate evidence from multiple tests of the same hypotheses rather than
select a subset of tests that meets predetermined criteria of significance.
Nevertheless, it is worth noting that, in our experiments (Fig. S11), we found
a meta-P value based approach to better select the subset of tests where the
null hypothesis was false than was possible with a procedure based on FDRs
and q values (63).

Meta-analysis of Associations Between GO Terms and Maturation Determinants.
GO terms (Biological Process) with ≥10 and ≤1,000 genes in D. melanogaster
were considered, which resulted in 613 GO term gene sets used that were
mapped to their A. mellifera orthologs. Metalysis was used to find associa-
tions between each GO gene set and the differentially regulated gene sets
from subsets of the 11 experimental conditions.

cis-Metalysis. cis-Metalysis is an extension of the Metalysis program designed
to find meta-associations involving motifs (or motif combinations) present in
gene promoters. It scans gene promoters with each motif to predict which
genes may be regulated by that motif and then performs meta-analysis
using this information. The software is modular, with the motif scanning
step being separate from the meta-analysis. Therefore, the motif scanning
step may be skipped as long as motif presence information is provided to the
software in the appropriate format.

i) Motif module prediction. A motif module is defined as the set of genes
with significant presence of the motif in their promoters, which is deter-
mined as described in ref. 29. The method searches up to 5 kbp upstream
of a gene for a motif’s presence using the SWAN program (29), which
captures the presence of one or more strong or weak matches to the
motif in the segment and accounts for the local G/C composition as well
as the global frequency of motif occurrence. Motif modules were pre-
dicted for 602 motifs obtained from FlyREG (D. melanogaster), Transfac
(D. melanogaster and Homo sapiens), Jaspar (H. sapiens), and ref. 64.

(Table S3 presents our list of experimentally characterized motifs as well
as our rationale for using them exclusively and not performing ab initio
motif discovery.) The result of this step is a genes × motifs matrix of
Boolean values set to true if a motif is deemed to be present in a gene’s
upstream region.

ii) Meta-analysis of motif–condition associations. The genes × motifs matrix
computed by the previous step or through alternative means is used in
this meta-analysis step. The user may configure the program to operate in
one of four different modes corresponding to different ways of defining
the cis-regulatory logic shared by multiple conditions. The modes are de-
scribed briefly here, and a more formal description is in SI Methods. (i)
Single motifs: the meta-P value of each motif module is computed in
a manner identical to the manner for a GO gene set (above). (ii) Identical
logic: For any motif pair (m1 and m2), the combinations m1 ∧ m2,
m1 ∧ −m2, and m2 ∧ −m1 are analyzed separately by constructing the
respective motif modules from the motif modules of m1 and m2 and
calculating the meta-P value of each of these three derived modules;
a meta-association must involve either the up-regulated (Gi,+) in every
experimental condition Ci or the down-regulated gene set (Gi,−) in every
experimental condition. The best meta-P value among the three motif
combinations is reported for the motif pair. (iii) Role-consistent logic:
for any motif pair (m1 and m2), associations with different conditions
may involve any of the following motif modules: m1, m2, m1 ∧ m2, m1
∧ −m2, and m2 ∧ −m1; however, all associations must be mutually role
consistent in the sense that, if mi is associated with up-regulated genes in
one condition, then mimay not be associated with down-regulated genes
in another condition and −mi may not be associated with up-regulated
genes in any condition. (iv) Flexible logic: for any motif pair (m1 and m2),
associations with different conditions may involve any of the following
motif modules: m1, m2, m1 ∧m2, m1 ∧ −m2, and m2 ∧ −m1. No additional
constraints are imposed here in defining a valid meta-association.

Biclustering and Motif Associations. We created a binary membership matrix
with rows for each of 9,272 genes and columns for each of 22 DEG sets (the
fast and slow genes of each of the 11 maturation determinants). With the R
package biclust, we ran the Bimax Biclustering method (37) on the mem-
bership matrix, searching for submatrices of logical ones; 492 biclusters were
discovered with this method while requiring the resulting biclusters to
contain at least five genes and at least three DEG gene sets. For the genes
contained in each bicluster, we tested for enrichment in each of the 602
motifs in our collection as well as every logical combination of motif pairs.
EVD P values were calculated reusing the 492 biclusters and shuffling the
motif target gene sets. We also created 12 SAMBA (9) biclusters using the
built-in tool in the Expander software (version 5 for Windows). We per-
formed the SAMBA biclustering on log2 fold change values of the genes
from the 11 maturation experiments. Missing data were assigned a value of
zero. Although we tried several settings of the parameters (overlap prior
factor, hash kernel size, option file type, and number of genes corre-
sponding to hash), we were most satisfied with the biclusters produced from
the default SAMBA parameters (0.1, 4, valsp_3ap, and 100,). Each of our 12
SAMBA biclusters contained between 19 and 90 genes and covered four or
five maturation determinants. Association tests and EVD analysis were per-
formed using the same approach as with the Bimax biclusters.
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