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Abstract Understanding the regulatory architecture of phenotypic variation is a fundamental

goal in biology, but connections between gene regulatory network (GRN) activity and individual

differences in behavior are poorly understood. We characterized the molecular basis of behavioral

plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage in both

reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking, we

discovered these colonies contain a continuum of phenotypes, with some individuals specialized for

either egg-laying or foraging and ‘generalists’ that perform both. Brain gene expression and

chromatin accessibility profiles were correlated with behavioral variation, with generalists

intermediate in behavior and molecular profiles. Models of brain GRNs constructed for individuals

revealed that transcription factor (TF) activity was highly predictive of behavior, and behavior-

associated regulatory regions had more TF motifs. These results provide new insights into the

important role played by brain GRN plasticity in the regulation of behavior, with implications for

social evolution.

Introduction
Understanding the genomic regulatory architecture of phenotypic plasticity is necessary to achieve

comprehensive knowledge of the mechanisms and evolution of complex traits. While a growing

body of knowledge exists on specific regulatory mechanisms involved in developmental plasticity,

less is known about the regulation of behavioral plasticity. Behavioral plasticity is of special interest

and presents unique challenges, as behavioral traits derive from the integrated actions of genetic,

transcriptomic, and neuronal networks (Sinha et al., 2020).
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Over the past 20 years, a close relationship between behavioral variation and brain gene expres-

sion has been documented across a range of organisms and behaviors (e.g. Zayed and Robinson,

2012). Still, the regulatory architecture underlying connections between the genome, brain, environ-

ment, and behavior are not well resolved, in part because behavior is itself a complex phenotype

with substantial variation between individuals. To fully understand how genomic and transcriptomic

variation is transduced into behavioral plasticity, we need both high-dimensional behavioral data at

the individual level as well as information on regulatory genomics for those same individuals.

Modification of gene regulatory networks (GRNs) has emerged as an important driver of plasticity

during the development and evolution of morphological phenotypes. For example, gains and losses

of cis-regulatory elements (e.g. binding sites for transcription factors (TFs)) influence species-specific

wing melanization patterns in Heliconius butterflies and Drosophila flies (Prud’homme et al., 2006;

Reed et al., 2011; Werner et al., 2010). Pelvic loss in stickleback fish convergently evolved through

deletion of a tissue-specific enhancer of the TF Pitx1 in multiple natural populations (Chan et al.,

2010). In other cases, similar morphological novelties arose independently through modification of

distinct developmental programs, as observed for beak size variation across clades of finches

(Mallarino et al., 2012). Recruitment of genes involved in developmental plasticity in the evolution

of novel phenotypes is thought to be facilitated by the fact that TFs and other regulatory genes

often have great temporal flexibility, with extensive variation in expression across developmental

time (Dufour et al., 2020).

Similar to its role in morphological variation, plasticity in GRNs is theorized to influence behavioral

variation, over both organismal and evolutionary time scales (Sinha et al., 2020). Brain gene expres-

sion is often responsive to environmental stimuli (Chandrasekaran et al., 2011; Cummings et al.,

2008; Mukherjee et al., 2018; Rittschof et al., 2014; Whitfield et al., 2003) and the regulatory

activity of many TFs is context-specific with respect to behavioral state (Chandrasekaran et al.,

2011; Hamilton et al., 2019). In addition, modification of hormone signaling and GRNs in peripheral

tissues has effects on brain GRNs and resulting behavior (Ament et al., 2012). These results demon-

strate that GRNs are plastic not only across developmental timescales but also influence real-time

behavioral variation. Still, the link between changes in GRNs and behavioral plasticity is weaker than

for developmental plasticity (Sinha et al., 2020), and to our knowledge, no empirical studies have

linked brain GRN plasticity to individual differences in behavior.

Eusocial insects are ideal for studying how GRN activity influences both developmental and

behavioral plasticity at the individual scale. Eusociality is characterized by a reproductive division of

labor between queen and worker castes, representing a developmentally plastic polyphenism well-

studied in many species (e.g. Holldobler and Wilson, 1990; Michener, 1974; O’Donnell, 1998;

Wheeler, 1986). Queens are specialized for reproductive functions, including mating and egg-lay-

ing, and in species with complex eusociality have levels of fecundity orders of magnitude greater

than their solitary ancestors. Workers, on the other hand, typically do not perform reproductive

behaviors and in many cases are sterile or unable to mate, instead performing many different non-

reproductive behaviors in a colony that are essential for colony growth and development. Species

with complex eusociality also often show additional within-caste behavioral plasticity, with individuals

specializing on specific subsets of tasks based on differences in worker age, morphology, or genetic

predisposition. The extensive behavioral plasticity observed in colonies of eusocial species may be

linked to ancestral developmental plasticity (Kapheim et al., 2020), highlighting the interconnected-

ness of gene regulation in both developmental and behavioral phenotypes relevant for social behav-

ior (Sinha et al., 2020).

We studied the relationship between brain GRN activity and behavior at the individual scale. We

focused on a recently discovered, surprising form of behavioral plasticity among worker honey bees.

Honey bee workers do not mate, but they possess functional ovaries and can produce viable haploid

eggs. Laying workers (LW) are rare in queenright colonies (Ratnieks, 1993; Visscher, 1996) but fre-

quent in situations of permanent queenlessness, when colonies lose their queen and then fail to rear

a replacement queen. In these cases, up to 50% of workers may activate their ovaries (Saka-

gami, 1954) and some of these workers lay eggs, producing thousands of drones prior to colony

death (Page and Erickson, 1988). Recently, it was discovered that some LWs engage in both repro-

ductive and non-reproductive behaviors (Naeger et al., 2013), a level of behavioral plasticity not

previously described in honey bee workers. Studying honey bee workers in LW colonies enables

investigation of the molecular architecture of behavioral variation typically only seen when
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comparing queens and workers, without the confounds of caste-specific developmental and physio-

logical differences.

Recent advances in machine learning and automatic behavioral tracking have enabled the study

of individual behavior for thousands of members within social insect colonies (Crall et al., 2015;

Gernat et al., 2018; Greenwald et al., 2015; Mersch et al., 2013; Wario et al.,

2015; Gernat et al., 2020). We used automatic behavioral tracking, genomics, and the extensive

behavioral plasticity present in honey bee colonies with LW to test the hypothesis that individual dif-

ferences in behavior are associated with changes in the activity of brain GRNs (i.e. changes in the

expression of TFs and their target genes). Our results provide key insights into the mechanisms

underlying the regulation of individual differences in behavior by brain GRNs.

Results

Extensive variation in behavior across laying workers
To define the behavior of individual bees, we deployed a high-resolution, automatic behavior moni-

toring system on six LW colonies in which each bee (n = 800 per colony) was individually barcoded,

similar to Gernat et al., 2018. Our extension of this system identifies the location and heading direc-

tion of each individual once per second, and uses convolutional neural networks and machine learn-

ing to detect behaviors (Gernat et al., 2020). For each individual across seven days of tracking

(when bees were 15–21 days old), egg-laying events and foraging trips were detected from images

of the hive interior and entrance (Figure 1A). A total of 115,281 egg-laying events and 96,086 forag-

ing trips were predicted for the six colonies (Supplementary file 1).

Colonies exhibited considerable variation in the proportion of bees engaged in egg-laying and/or

foraging. With the exception of colony F, more workers were identified as layers than foragers

(Figure 1B). Across all colonies, a high proportion of bees were observed laying eggs (54% with at

least two egg-laying events on at least one day) or foraging (28% with at least two foraging trips on

at least one day) during the recording period, while 10.8% of bees performed both egg-laying and

foraging on the same day at least once during the seven days of tracking. A small number of these

‘generalist’ bees (1.3%; 45 individuals) were exceptional in their consistent high performance of both

measured behaviors, with a minimum of two egg-laying events and two foraging trips on the same

day, across at least three days. Three-day ethograms of an egg-layer, generalist, and forager are

shown in Figure 1C. Ovary dissection of a subset of individuals revealed that 100% of specialized

egg-layers and generalists had active ovaries (ovary scores of 3–5; Hess, 1942), compared with only

54% of the specialized foragers (Figure 1D; Supplementary file 2). Of the foragers with activated

ovaries, 13/14 had five or fewer predicted egg-laying events, compared with generalists and layers,

which laid an average of 206 eggs (range: 64–774).

The daily and lifetime behavior of each bee was summarized using two behavioral scores: the

‘specialist’ score, which describes how specialized an individual was on either egg-laying or foraging,

and the ‘generalist’ score, which describes how much an individual performed both egg-laying and

foraging. Scores were derived from daily normalized ranks within colonies to allow comparison

across days and colonies with differing overall activity levels; bees that performed neither egg-laying

nor foraging across the experiment have both specialist and generalist scores of 0. Scores were

mapped onto a two-dimensional color space for visualization of behavior over time (Figure 2A; Fig-

ure 2—figure supplements 1–2; Supplementary file 1).

Influence of worker source colony on behavior
To study the influence of source colony (including genetics and development) on behavior, experi-

mental colonies were assembled with workers from different source colonies headed by unrelated

queens. A subset of source colonies (4/6) was pre-screened for worker egg-laying in queenless labo-

ratory cages and showed variation in the timing and extent of egg-laying (Figure 2—figure supple-

ment 3). Bees in colonies A-C were derived from colonies with naturally mated queens. Queens of

Apis mellifera mate multiply with up to ~20 males and produce workers with a mix of paternal geno-

types (Adams et al., 1977; Estoup et al., 1994; Lobo and Kerr, 1993); workers derived from these

colonies were therefore assumed to be a mix of many patrilines. In contrast, experimental colonies

D-F were assembled of workers obtained from two different source colonies, each of which was

Jones et al. eLife 2020;9:e62850. DOI: https://doi.org/10.7554/eLife.62850 3 of 28

Research article Ecology Genetics and Genomics

https://doi.org/10.7554/eLife.62850


headed by a queen artificially inseminated with the semen of a single different drone (SDI). Workers

within each SDI source colony are highly genetically related compared with workers from a naturally

mated queen colony (average relatedness = 0.75 due to haplodiploidy).

Using SDI colonies allowed us to more easily explore whether the genetic and environmental dif-

ferences between source colonies would lead to segregation of reproductive and non-reproductive

behavior when mixed into the same (queenless) environment. In both colonies D and E, which were

replicates of the same two SDI queens’ offspring, the behavior of workers differed considerably by

source: one source colony (SDI 1) comprised the majority of foragers, while the other (SDI 2)
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Figure 1. Automated monitoring of behavior in queenless colonies of laying worker honey bees. (A) Automatic behavior monitoring was performed

inside the hive and at the hive entrance to predict egg-laying and foraging events in six colonies (N = 800 bees per colony at the start of each

trial). Hive images were captured 1/s for 24 h/day, and entrance images 2/s for 12 h/day beginning when adult bees were 15 days old. (B) Proportion of

bees alive each day categorized as layers (purple), foragers (green), generalists (orange), or others (gray). For colonies A-C, individuals were from single

source colonies headed by a naturally mated queen. For colonies D-F, individuals from two source colonies headed by queens each inseminated by

semen from a single different drone (single drone inseminated, SDI) were mixed. Different source colonies are indicated by pattern and hue. (C)

Ethograms for three individuals selected for sequencing (bCodes shown below group labels) across three days of tracking. (D) Distribution of ovary

scores for individuals selected for sequencing. Insets are images from bees with ovary scores of 1, 3, and 5. L: layer, G: generalist, F: forager.
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Figure 2. Patterns of brain gene expression and chromatin accessibility are associated with behavior. (A) Daily rank-normalized behavior of individuals

(rows) selected for brain RNAseq and ATACseq analysis converted to 2D colorspace from specialist and generalist scores. (B) Principal Component

Analysis (PCA) of behavioral variation for individuals chosen for brain RNAseq and ATACseq analysis. Metrics included number of eggs laid, number of

foraging events, proportion of foraging trips with evidence of nectar collection, proportion of trips with evidence of pollen collection, and proportion of

trips with evidence of both nectar and pollen collection. (C) Euler diagram for overlaps of pairwise differentially expressed genes (DEGs) between

behavioral groups. Note that one gene was overlapping between F vs. G and G vs. L (but not F vs. L) and is not represented in the diagram due to

graphical constraints. (D) Euler diagram for overlaps of genes proximal to pairwise differentially accessible chromatin peaks (DAPs) between behavioral

groups. (E) PCs from PCA of brain transcriptomic profiles regressed against specialist score (PC1: R2 = 0.947, p<0.0001; PC2: R2 = 0.838, p<0.001). (F)

PCs from PCA of brain chromatin accessibility regressed against specialist score (PC2: R2 = 0.584, p<0.001; PC3: R2 = 0.543, p<0.0001; PC4: R2 = 0.187,

p<0.0045; PC1: p>0.05). L: layer, G: generalist, F: forager.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Formulae and color-space mapping for specialist (left) and generalist (right) behavioral scores.

Figure supplement 2. Daily behaviors of individual bees (rows) across time in each colony.

Figure supplement 3. Smoothed average egg counts for laying workers in laboratory cages.

Figure supplement 4. Histogram (bars) and density (lines) of normalized (logCPM) gene expression for genes with (dark gray) and without (light gray)

nearby peaks of chromatin accessibility.

Jones et al. eLife 2020;9:e62850. DOI: https://doi.org/10.7554/eLife.62850 5 of 28

Research article Ecology Genetics and Genomics

https://doi.org/10.7554/eLife.62850


contained the majority of egg-layers (Figure 1B; Figure 2—figure supplement 2). In colony F the

two SDI source colony progeny contributed more equally to foraging, while the most specialized

egg-laying bees were predominantly from just one source colony (Figure 1B; Figure 2—figure sup-

plement 2, SDIs 3 and 4). However, even in colonies where SDI source was clearly influential, special-

ized foragers and layers were identified from both sources, indicating that colony genetics and

development are not the only contributors to individual variation in the likelihood of performing

these behaviors. Similar patterns of specialization were observed in colonies A-C and D-F

(Figure 1B; Figure 2—figure supplement 2), indicating that they were not an artifact of decreased

intracolonial genetic diversity.

Specialized behavioral groups are highly transcriptionally and
epigenetically distinct
A subset of highly specialized foragers, egg-layers, and generalist individuals were selected from

two experimental colonies (from only one source SDI colony each, to minimize genetic variation

among individuals) for brain gene expression and chromatin accessibility profiling (Figure 2A). Sam-

pled individuals were among those with the most extreme specialist and generalist scores within

each colony, and were assigned to behavioral groups based upon their lifetime behavior. Principal

component analysis (PCA) on behavioral data for these individuals shows these three groups are

behaviorally distinct, with generalists intermediate and more variable than forager and layer groups

(Figure 2B).

Consistent with strong behavioral differentiation, foragers and layers exhibited widespread differ-

ences in brain gene expression, with differential expression of nearly half (46%) of all genes

expressed in the brain (Figure 2C; Supplementary file 3). Differences in brain gene expression were

much stronger between foragers and layers (4506 differentially expressed genes, DEGs; FDR < 0.05)

than for generalists relative to the two specialist groups (648 generalist vs. layer and 374 generalist

vs. forager DEGs). Generalists shared transcriptional profiles of both foragers and layers, with nearly

all genes differentially expressed between generalists and either specialized group also present on

the forager vs. layer DEG list (Figure 2C).

Forager vs. layer DEGs were enriched for cytoplasmic translation and transport gene ontology

(GO) biological processes, along with many metabolic and biosynthetic processes

(Supplementary file 3; FDR < 0.05). All enriched GO terms but one (114 of 115) were for genes

more highly expressed in foragers relative to layers (forager-biased genes). The only GO term

enriched in layer-biased genes relative to foragers, cytoplasmic translation, was also the only

enriched GO term for genes overexpressed in generalists relative to foragers. Similarly, GO terms

enriched in generalist-biased genes (relative to layers) included many of the transport terms enriched

among forager-biased genes (Supplementary file 3).

In addition to differences in brain gene expression, layers and foragers showed differences in

accessible chromatin in the brain based on the Assay for Transposase-Accessible Chromatin using

sequencing (ATAC-seq; Buenrostro et al., 2013). 1794 differentially accessible peaks (DAPs;

FDR < 0.05) were identified between foragers and layers, proximal to 1207 genes (Figure 2D;

Supplementary file 4). Forager-biased DEGs and genes proximal to forager-biased DAPs over-

lapped significantly, 1.2x more than expected by chance (p=0.01 for hypergeometric test of over-

lap). Genes proximal to peaks of accessible chromatin (regardless of differential status) were on

average more highly expressed than genes without proximal peaks (p<0.0001, Kolmogorov-Smirnov

test), supporting a signal of transcriptional activation near ATAC-seq peaks (Figure 2—figure sup-

plement 4). No DAPs were identified for foragers relative to generalists, and there were only 16

DAPs (assigned to 13 genes) for generalists relative to layers (Figure 2D). These 13 genes also had

DAPs for foragers relative to layers (Figure 2D). DAPs between foragers and layers were enriched

for 148 GO terms (FDR < 0.05), including developmental processes, morphogenesis, and metabo-

lism (Supplementary file 4). Similar to differentially expressed genes, GO enrichment signal came

from those DAPs with a bias in foragers (i.e. more accessible in foragers relative to layers); no signifi-

cantly enriched GO terms were identified from layer-biased peaks, despite 44% of differential peaks

being more accessible in layers compared to foragers.
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Brain gene expression and chromatin accessibility are correlated with
behavioral variation
Our high-resolution behavioral data allowed us to test whether molecular and behavioral variation

were connected not only at the group level, but for individuals as well. Using PCA, we found that

degree of individual behavioral specialization was significantly correlated with measures of both

brain gene expression and chromatin accessibility (Figure 2E–F). Among PCs for gene expression,

PCs 1 and 2, which explained 31.1 and 11.9% of the total variance in gene expression, respectively,

were significantly correlated with individual behavioral specialist score (Figure 2E). Generalists

showed intermediate values of these PCs, consistent with an intermediate brain transcriptomic pro-

file. Genes with extreme PC loading values (upper and lower 5% of loadings) for PC1 were enriched

for transmembrane and ion transport, functions related to aerobic and cellular respiration, and

energy transport (Supplementary file 5). PC2 extreme loading genes were enriched for processes

relating to detection of light, phototransduction, and sensory perception (Supplementary file 5).

Extreme loadings for both PC1 and PC2 overlapped significantly with DEGs in the pairwise compari-

son of layers and foragers (PC1: RF = 1.2, p=1.39e-06, PC2: RF = 1.7, p=8.39e-91).
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Figure 3. Differences in TF activity and TF motif occurrence are associated with specific behavioral phenotypes. (A) Circos plot representing a subset

of significant correlations between behaviors (top) and expression of TF modules (bottom). Lines connecting behaviors with TF modules indicate

significant associations. TF modules included are those mentioned in the main text or in other figures, and five of nine traits are included for simplicity.

All significant correlations between behaviors and TF modules are given in Supplementary file 8. For behaviors, p indicates proportion (e.g. p(pollen)

is the proportion of returning foraging trips where the bee carried pollen). (B) Motifs enriched within DAPs show maximum binding probabilities near

peak summits. (C) Motifs enriched in promoter regions of forager >layer DEGs show elevated binding probabilities ~ 3 kb upstream of and overlapping

TSSs. Motif names and sequences are from FlyFactor (Zhu et al., 2011) for Drosophila melanogaster.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Network of 23 TFs with module expression significantly correlated with nine behavioral and physiological metrics (see

Supplementary file 2) measured across individuals.
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Similarly, PCA of chromatin accessibility data revealed PCs that were correlated with behavioral

variation. Accessibility PCs 2, 3, and 4 were all significantly correlated with the individual behavioral

specialist score (Figure 2F). Genes with extreme PC loading values for each correlated PC showed

enrichment for multiple GO terms, including biological processes related to cell-cell adhesion, loco-

motion, axon guidance, neuron projection guidance, and synapse organization (Supplementary file

6). Many GO terms (11 of 37) were enriched for extreme loading genes of both PCs 2 and 3, while

synapse organization was the only enriched term for loadings of PC4.

GRN activity links molecular and behavioral phenotypes
To test the role of TF and gene regulatory plasticity in the regulation of LW behavioral phenotypes,

we conducted TF motif analyses and brain GRN reconstruction (Chandrasekaran et al., 2011), indi-

vidualized for each bee. The activity of many TF modules (TFs and their predicted targets) showed

significant correlations with individual variation in several behavioral metrics, including numbers of

eggs laid (50 TF modules), number of foraging trips (74 TF modules), and proportion of returning

foraging trips with pollen loads (41 TF modules) (Figure 3A; Supplementary file 8). At the individual

level, 23 TF modules were correlated with all nine behavioral and physiological metrics (Figure 3—

figure supplement 1; Supplementary file 8). These behaviorally correlated TF modules include TFs

involved in JH signaling (usp, Kr-h1, and Blimp-1), histone acetylation (trx), neuronal remodeling (Kr-

h1, Hr51, trx), and circadian rhythms (opa and Hr51).

In addition to the correlations between TF module activity and behavior, many TF motifs were

enriched in peaks of differential accessibility or in the regulatory regions of DEGs between special-

ized layers and foragers. 77 out of 223 motifs (functionally validated in Drosophila melanogaster,

Zhu et al., 2011) were enriched in layer vs. forager DAPs (q-val <0.01, Supplementary file 7), and

14 motifs were specifically enriched in the regulatory regions of forager-upregulated DEGs (q-

val <0.2, Supplementary file 7). Nine motifs were common to both sets (Figure 3B–C), including

binding sites for TFs involved in regulating nervous system development (hairy, side, sr, and klu),

transcription (max/mnt), juvenile hormone (JH) signaling (tai and tai/met), chromatin modification

(trl), and circadian rhythms (cwo). These motifs were centrally enriched within DAPs (Figure 3B), and

showed two peaks of elevated binding probability in the promoter regions of forager-biased DEGs,

one ~ 3 kb upstream of transcriptional start sites (TSSs) and a second overlapping TSSs (Figure 3C).

By contrast, only two TF motifs were significantly enriched in the regulatory regions of specialist vs.

generalist DEGs (mad and ken, Supplementary file 7), and no motifs were enriched within DAPs

between generalists and either specialist group (Supplementary file 7), likely due in part to the

small number of DAPs distinguishing generalists and specialists (Figure 2D). Many of the motifs

enriched within DAPs or DEG promoters are binding sites for TFs that were themselves differentially

expressed, including cwo, tai/met, side, h, and sr (Supplementary file 3).

Across individuals, GRN activity was largely consistent within each behavioral group (Figure 4A),

with TF module activity most distinct between layers and foragers. The relationship between TF

expression and behavior was so strong that it was possible to predict individual behavior based

solely upon the expression of TFs in the brain using a machine-learning algorithm and leave-one-out

cross validation (Figure 4B; Figure 4—figure supplement 1). TF expression correctly predicted

100% of foragers and 94% of layers. By contrast, it was not possible to predict generalists based on

brain TF expression (only 1 of 8 correctly classified).

Comparative analyses of LW colony behavioral phenotypes and other
social insect phenotypes
The performance of both egg laying and foraging by individuals in LW colonies, previously reported

in Naeger et al., 2013, is unusual for honey bees; these behaviors are otherwise confined to sepa-

rate castes (queens and workers). This raises the question of whether the mechanisms underlying LW

behavior reflect caste-related molecular differences. We compared our gene expression results to

previous studies of queens, workers, and worker subcastes in various species of social insects to ask

whether the molecular architecture of LW phenotypes may be useful in the context of understanding

additional social phenotypes.

In comparison with honey bee subcastes, forager-biased genes in LW colonies showed significant

overlap with forager-biased genes in two studies of queenright colonies (when compared with
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nurses) (RF = 1.7 p=1.707e-09; Alaux et al., 2009; RF = 1.9 p=1.740e-07; Whitfield et al., 2003;

Supplementary file 9). Layer-biased genes in this study overlapped with genes upregulated in

nurses relative to foragers in these queenright colonies (RF = 1.7, p=3.656e-10; Alaux et al., 2009;

RF = 2.0, p=1.116e-13; Whitfield et al., 2003; Supplementary file 9).

In addition, differences in brain gene expression between egg-layers and foragers mirrored

caste-related differences across species. Genes differentially expressed between foragers and egg-

layers in this study were enriched for previously identified queen vs. worker brain DEGs in Mega-

lopta genalis bees, which facultatively engage in both reproductive and non-reproductive behaviors

(RF:1.3, p=0.009; Jones et al., 2017; Supplementary file 9). Overlap was in the expected direction,

with queen-biased genes in M. genalis overlapping layer-biased genes (RF:2.5, p=0.003) and

worker-biased genes overlapping forager-biased genes (RF:1.6, p=0.01). Further, worker-upregu-

lated DEGs in the primitively eusocial wasp, Polistes metricus overlapped significantly with forager-

upregulated genes in this study (RF:2.6, p<0.0001; Toth et al., 2010). In comparison with honey bee
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Figure 4. TF module activity and TF expression predict individual variation in behavior. (A) TF modules (rows) with significant up/downregulation in at

least 10 individuals, sorted by hierarchical clustering. Individuals (columns) are ordered by specialist score, with darkly colored blocks indicating

correctly classified individuals based on TF expression prediction analysis and lightly colored blocks indicating incorrect classification. TF modules

showed patterns of differentiation between L and F, while G were more variable in module activity. Labeled modules are those with TFs shown in panel

(B) or discussed in text. (B) Class prediction analysis based on brain TF expression correctly classified all but one specialist (L: layer, F: forager) but only

one generalist (G). Normalized expression (logCPM) of 4 of the top 20 informative TFs for class prediction analysis are shown (others in Figure 4—

figure supplement 1). Median of points is represented by bold horizontal line within shaded 95% confidence interval, with length of shape and

smoothed curve showing range and density of data, respectively.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Normalized expression (logCPM, scaled to a maximum of 1 to allow for comparison across TFs) of the top 20 most informative

TFs for class prediction analysis plotted against individual specialist score.
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unmated queens and workers, overlap was significant but in an unexpected direction: queen- and

worker-biased genes overlapped with forager- and layer- upregulated genes, respectively (RF:1.4,

p=5.495e-08 and RF:1.2, p=0.008; Grozinger et al., 2007; Supplementary file 9).

Additionally, forager vs. layer DEGs in this study were enriched for genes identified as under

selection in two studies of social evolution. Forager vs. layer DEGs overlapped significantly with

genes undergoing positive selection in honey bees (RF = 1.1, p=0.015; Harpur et al., 2014;

Supplementary file 9) and across highly eusocial species relative to solitary or primitively eusocial

species (Woodard et al., 2011; Supplementary file 9). Genes under selection in highly eusocial line-

ages were enriched specifically for genes identified here as upregulated in foragers relative to layers

(RF = 1.4, p=0.009), but not for layer-biased DEGs (p=0.106) (Supplementary file 9). Forager vs.

layer DEGs were not significantly enriched for genes that were identified in a third study as under

selection in social lineages of bees (p=0.262; Kapheim et al., 2015; Supplementary file 9). Many of

the forager vs. layer DEGs also found to be undergoing positive selection were related to metabo-

lism (Supplementary file 9).

TFs involved in LW plasticity previously implicated in social evolution
Given that differences in brain gene expression between egg-layers and foragers reflect caste-

related differences, we also tested whether there is overlap between TFs involved in LW plasticity

and those previously implicated in social evolution. Indeed, many of the TFs we identified above as

related to behavioral plasticity based on motif enrichment, group predictive analysis, or brain GRN

activity were previously known to be associated with social behavior on an evolutionary timescale. A

comparative analysis of the genomes of ten bee species (Kapheim et al., 2015) identified 13 TF

motifs with associations between binding strength and social complexity. Nine of those 13 motifs

were also detected above as enriched within specialist DAPs or DEG regulatory regions (p=0.015,

hypergeometric test of overlap), and 6 of those nine are binding sites for TFs included in the above
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Figure 5. Fifteen candidate TFs predicted to regulate egg-laying and foraging behavior based on evidence across

all analyses (descriptions of categories in Materials and methods). Names given are for Drosophila melanogaster

motifs (Zhu et al., 2011), with homology to honey bee genes as in Kapheim et al., 2015. Color of bar in first two

columns indicates whether there was stronger enrichment among forager-biased (green) or layer-biased (purple)

peaks or genes.
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individualized GRNs. Along with TF module correlation and behaviorally-predictive TF expression,

these results highlight a set of 15 TFs as compelling candidates in social plasticity and evolution,

with significant associations in at least 3 of the five analyses (Figure 5; Table 1). The 15 TFs have

functions related to known mechanisms associated with social behavior, including brain development

(Hamilton et al., 2016), JH signaling (Woodard et al., 2011), and chromatin changes via histone

acetylation (Simola et al., 2016).

Discussion
Uncovering the regulatory mechanisms involved in behavioral plasticity is important to fully under-

stand how behavioral phenotypes develop and evolve. We used automatic behavioral tracking and

genomics to uncover the role of brain GRN activity in the extensive behavioral variation observed in

colonies of laying worker honey bees. We discovered that continuous phenotypic variation is associ-

ated with continuous variation in both brain gene expression and brain chromatin accessibility, and

that TF activity is predictive of behavioral phenotype at the individual level. These results provide

Table 1. Description of 15 candidate TFs regulating specialist behavioral phenotypes in Figure 5.

Names given are for Drosophila melanogaster motifs (Zhu et al., 2011), with homology to honey bee genes as in Kapheim et al.,

2015. Function summaries are adapted from D. melanogaster gene annotations from FlyBase (release FB2020_05;

FlyBase Consortium et al., 2019). Note that terms related to ‘regulation of transcription’ apply to most TFs but were omitted for

brevity.

Motif TF name Function(s)

cwo clockwork orange circadian regulation of gene
expression; dendrite morphogenesis

tai/met taiman, Mondo ecdysone receptor co-activator;
lipid and carbohydrate metabolism

side sidestep, E(spl)mgamma-HLH pattern specification; neurogenesis;
neuronal stem cell maintenance

h hairy cell morphogenesis; tracheal
system development; cellular metabolism

sr stripe central nervous system development

max Max cell and organismal growth

dpn deadpan adult locomotory behavior;
neuroblast development

usf Usf [unknown]

med Medea dorsal-ventral patterning; activin receptor
signaling; eye morphogenesis; germ-line
stem cell division and maintenance;
neuron development

opa odd paired embryogenesis; midgut development;
adult head morphogenesis; neural stem
cell development; circadian rhythm

bab1 bric a brac 1 pattern formation; ovary morphogenesis;
abdominal pigmentation;
olfactory receptor neuron fate diversity

deaf1 Deformed epidermal autoregulatory factor-1 embryo development;
regulation of immune response

crebA Cyclic-AMP response element binding protein A salivary gland development;
cuticle development

sug sugarbabe regulates expression of insulin-like
peptides and genes involved in lipid and carbohydrate metabolism

usp ultraspiracle cell migration; response to ecdysone;
germ cell development; metamorphosis;
mushroom body development; neuron remodeling
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new mechanistic insights into the important role played by brain GRNs in the regulation of behav-

ioral variation, with implications for understanding the mechanisms and evolution of complex traits.

Our high-dimensional behavioral data revealed a near continuous distribution of phenotypes

along an axis of egg-laying and foraging, two behaviors that are typically expressed separately in

the queen and worker castes of honey bee colonies. Consistent with previous reports of ovary activa-

tion in queenless colonies (Page and Erickson, 1988; Sakagami, 1954), over half of workers tracked

laid eggs. Some of these workers also engaged in foraging, consistent with the observations of

Naeger et al., 2013, which supports the suggestion that some laying workers are not ‘selfish’ repro-

ducers but engage in activities that may benefit the colony as a whole. We also showed a decoupling

between ovary status and behavior for some individuals, unlike what has been observed in many

other social insect species (Barth et al., 1975; Michener, 1974; Wilson, 1971). Two-thirds (14/21)

of the foragers had activated ovaries, but most laid eggs infrequently or not at all, demonstrating

that ovary activation alone is not a strong predictor of exactly which individuals will lay eggs. This

decoupling of reproductive physiology from reproductive behavior is consistent with the evolution-

ary co-option of reproductive signaling pathways for non-reproductive behaviors, a phenomenon

well documented in honey bees (Tsuruda et al., 2008; Graham et al., 2011; Page et al., 2012).

Given previous demonstrations of cross-talk between peripheral tissues and brain gene networks in

the honey bee (Ament et al., 2012; Wheeler et al., 2013), our results further suggest that behav-

ioral variation in queenless workers likely involves the coordinated actions of multiple tissue types,

including the ovary.

Like the task specialization observed in typical, queenright colonies of honey bees and many

other social insects (Oster and Wilson, 1979), the majority of individuals in LW colonies showed con-

sistency in performance of either egg-laying or foraging, but not both. It is important to note that

genetic variation may contribute to individual differences in behavior (Page and Robinson, 1991;

Page and Robinson, 1994). However, the induction of egg-laying behavior in queenless colonies is

itself a plastic response, suggesting that at least for egg-laying and generalist individuals, a combina-

tion of hereditary and environmental factors likely influence the development of these behavioral

phenotypes. Task specialization can contribute to increased efficiency in social insects, either

through learning or reduction of task switching costs (Holldobler and Wilson, 1990; Jeanson et al.,

2008; Trumbo and Robinson, 1997; c.f. Dornhaus, 2008). In queenless colonies of honey bees,

specialization along a reproductive/non-reproductive axis may lead to increased production of hap-

loid males prior to the death of workers, with specialized foragers collecting food for these develop-

ing drones while specialized egg-layers work to produce thousands of drones synchronously in these

terminal colonies (Page and Erickson, 1988). These findings suggest that LW honey bees may dis-

play a form of colony organization that is adaptive, as opposed to one of chaos and competition,

which has long been thought to characterize LW colonies (Morse, 1990; Ratnieks et al., 2006;

Ratnieks and Wenseleers, 2008; Dadant & Sons, 1975; Wenseleers and Ratnieks, 2006). Worker

derived drones have viable sperm (Gençer and Kahya, 2011) and therefore may provide a perma-

nently queenless honey bee colony with a final fitness opportunity if the males can successfully mate

with queens. It is difficult to evaluate this hypothesis because the incidence of permanently queen-

less colonies is not known in natural populations of honey bees. However, production of drones by

workers in LW colonies is similar to that observed in bumble bees, where worker competition over

male production is a normal part of the colony cycle after queen death (Cnaani et al., 2002;

Free, 1955), or even prior to queen death in some species (Velthuis and Duchateau, 2011).

Consistent with many other studies of behavior and brain gene expression across animal species

(e.g. Bukhari et al., 2019; Mello et al., 1992; Whitfield et al., 2003), we identified robust brain

transcriptional signatures associated with specific behavioral states. Beyond these group level differ-

ences, we also discovered that large components of this molecular variation were correlated with

behavior, and both behavior and brain gene regulatory activity were continuous across bees. Our

finding that both brain gene expression and chromatin accessibility vary continuously with behavioral

phenotype suggests that behavioral plasticity is subserved by continuously varying molecular pro-

grams, rather than threshold-based or quantized changes.

At the individual bee level, changes in the expression of TFs, accessibility of TF motifs in

enhancers and promoters, and activity of TF module target genes were all strongly associated with

behavioral state. This is highlighted by the results of our predictive analysis, where 97% of specialists

were accurately predicted to phenotype based on TF expression alone, despite the small number of
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TFs relative to all differentially expressed genes. Spatial and temporal integration of discrete events

such as TF binding, aggregated at the whole brain level and across TFs and genes, may lead to the

continuous variation we observed in gene expression and chromatin accessibility (e.g. Araya et al.,

2014).

In addition to predicting the collective behavioral phenotypes of individual bees, our analysis of

GRNs allowed us to probe the influence of TF module activity on single behaviors. We identified a

set of 23 TF modules that were associated with all aspects of behavior and physiology we measured.

These TFs appear to coordinate sets of behaviors that are not overtly linked (e.g. proportion of nec-

tar foraging trips and number of eggs laid) but may be influenced by the same regulatory machinery.

Three of these modules are activated by TFs downstream of JH, a hormone with numerous well-

studied roles in social insect behavior, including the regulation of oogenesis in queens and age-

related division of labor in workers (Tsuruda et al., 2008; Hamilton et al., 2016; Page et al., 2012).

Our results are consistent with a role of JH signaling in queenless colonies of worker honey bees,

regulating a behavioral division of labor between specialized egg-layers and foragers. These findings

match previous work describing differences in JH titers between egg-laying workers and foragers in

queenless colonies (Robinson et al., 1992), and suggest that mechanisms underlying variation in

egg-laying behavior may be similar to nurse/forager differences in queenright colonies. Overlap in

brain gene expression profiles between nurses and egg-layers further supports this conclusion.

By combining our analysis of GRNs in individual bees with motif enrichment in gene regulatory

regions across individuals, we identified a set of 15 TFs which appear to play a key role in regulating

specialist behavioral phenotypes (Figure 5). Intriguingly, many of these TFs were also identified as

relevant for social evolution, with increases in TF motif presence in gene promoters of social com-

pared with solitary species of bees (Kapheim et al., 2015). We observed especially strong overlap

of these evolutionarily-implicated TFs and those with motif enrichment within differentially expressed

genes or differentially accessible chromatin of specialist phenotypes. This suggests that regulatory

regions that arise during evolutionary transitions to eusociality may be maintained and even further

refined for the regulation of specialized subcastes in social species. In contrast, comparatively little

overlap was seen when comparing evolutionarily-implicated TFs with TFs whose expression was

most predictive of specialist behavioral phenotypes. This mismatch between TF expression and motif

presence may reflect the complexity of GRNs, where genetic and epigenetic landscapes modulate

the effects of TF activity. Alternatively, these results may reflect differences in the mechanisms

underlying intra- vs. interspecific variation in social behavior. Further research exploring the role of

these TFs and their activity in a range of contexts is needed to provide clarity on these results.

While behavioral specialization appears to be common among members of queenless honey bee

colonies, the finding of even a small number of generalist bees who perform both egg-laying and

foraging has intriguing implications. The presence of these generalists suggests that despite the

long divergence from a solitary ancestor (~85 my, Branstetter et al., 2017), honey bees retain great

flexibility for performance of multiple behaviors that are typically confined to either the queen or

worker caste. Latent plasticity in social insects that is inducible under extreme conditions is also seen

in morphologically and temporally defined worker subcastes under queenright conditions (Robin-

son, 1992; Simola et al., 2016; Wilson, 1980). Generalists showed high variation in behavior, and

similarly were difficult to predict phenotypically based on TF activity, unlike specialists. Further, brain

GRN activity in these individuals was less defined, with fewer TF modules showing significant up- or

down-regulation in generalist individuals compared with specialists. Combined with PCA on brain

gene expression and chromatin accessibility, these findings suggest that generalists are molecularly

intermediate between specialized groups.

Our discovery of intermediate generalist phenotypes in laying worker colonies, along with their

molecular signatures, provides support for one of the leading theories of eusocial evolution, the

Ovarian Ground Plan Hypothesis (OGPH). The OGPH posits that the emergence of queen and

worker castes from solitary ancestors involved the genetic decoupling of reproductive and non-

reproductive behavioral programs through changes in gene regulation acting on ancestral plasticity

(Gadagkar, 1997; Turillazzi and West-Eberhard, 1996; West-Eberhard, 1987). The phenotypic

continuum we observed in laying worker colonies, with both reproductive and non-reproductive spe-

cialists as well as generalists, suggests that this decoupling process is at least partially reversible

and/or incomplete in honey bees, unlike in eusocial species where workers lack reproductive anat-

omy and corresponding behaviors entirely (e.g. ants and higher termites). Additionally, molecular
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characterization of this behavioral variation, especially our TF analyses, supports the hypothesis that

incremental changes in gene regulatory network activity led to the decoupling of solitary behavioral

programs into distinct queen and worker castes. This hypothesis is consistent with previous research

linking changes in TF activity with social evolution (Kapheim et al., 2015; Kapheim et al., 2020). If

correct, this hypothesis provides a framework for understanding the evolution of eusociality at the

molecular level.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Biological sample
(A. mellifera)

queens Honey Bee Insemination
Service, Washington
State University

SDI colonies

Biological sample
(A. mellifera)

workers University of Illinois Bee
Research Facility

Commercial
assay or kit

RNeasy Mini Kit Qiagen 74104

Commercial
assay or kit

TruSeq Stranded
mRNA HT kit

Illumina RS-122–2103

Commercial
assay or kit

Nextera DNA
Sample
Preparation Kit

Illumina FC-121–1031

Software, algorithm Trimmomatic RRID:SCR_011848 v0.36

Software, algorithm STAR RRID:SCR_015899 v2.5.3

Software, algorithm bwa RRID:SCR_010910 v0.7.17

Software, algorithm Picard RRID:SCR_006525 v2.10.1

Software, algorithm R project for
statistical computing

R Core Team RRID:SCR_001905

Bees and colony setup
Source colonies
Honey bee colonies were maintained according to standard beekeeping practices at the University

of Illinois Bee Research Facility in Urbana, Illinois. One-day-old adult worker bees were obtained by

removing sealed honeycomb frames of late-stage pupae from source colonies in the field and hous-

ing them in an incubator inside emergence cages at 34˚C and 50% relative humidity. Bees were

removed from frames daily to collect adults less than 24 hr old.

Prior to establishing the colonies of barcoded bees, 16 source colonies were screened for worker

egg-laying (‘laying worker’, LW) potential by stocking Plexiglas cages with 50–100 one-day-old work-

ers and holding them in queenless, broodless conditions. Cages contained small pieces of 3D-

printed honeycomb (similar to Fine et al., 2018) to provide a standardized location for workers to

lay eggs, as well as 50% sucrose solution and pollen paste (45:45:10 ratio by weight of pollen, honey,

and water) provided ad libitum and refreshed daily. Cages were monitored daily to count eggs. We

found, as in other studies, variation in the timing and extent of LW development among different

source colonies (Figure 2—figure supplement 3), reflecting the effect of genotypic and/or environ-

mental differences on laying worker potential (Miller III and Ratnieks, 2001; Page and Robinson,

1994; Robinson et al., 1990; Velthuis, 1970). When possible, source colonies were chosen from

among those screened that displayed high levels of worker egg-laying in cages within 14 days.

To reduce genetic variation among bees used for sequencing, experimental colonies D-F were

established from a mix of two source colonies each headed by a queen of either A. mellifera ligustica

or A. mellifera carnica origin who had been artificially inseminated with semen from a single drone

(SDI) (queen rearing and inseminations performed by Sue Cobey, Honey Bee Insemination Service;

Washington State University; US stocks of bees are primarily, but not completely ligustica or carnica).

Jones et al. eLife 2020;9:e62850. DOI: https://doi.org/10.7554/eLife.62850 14 of 28

Research article Ecology Genetics and Genomics

https://scicrunch.org/resolver/SCR_011848
https://scicrunch.org/resolver/SCR_015899
https://scicrunch.org/resolver/SCR_010910
https://scicrunch.org/resolver/SCR_006525
https://scicrunch.org/resolver/SCR_001905
https://doi.org/10.7554/eLife.62850


Experimental colonies A-C were established from naturally mated, A. mellifera ligustica source colo-

nies. Honeycomb frames of late-stage pupae were removed from source colonies and maintained in

an indoor incubator. Worker bees were collected from these frames each day to obtain 0–24 hr old

individuals for barcoding. A total of 800 bees were used for each experimental colony, collected and

barcoded over 1–2 days upon eclosion (Supplementary file 10).

Barcoding bees
Bees were tagged with ‘bCode’ barcodes as in Gernat et al., 2018. Unique sets of bCodes were

used to differentiate bees barcoded on different days, as well as to differentiate bees from different

source colonies in colonies D-F. To attach bCodes to bees, workers were anesthetized on ice and

then positioned using soft forceps (BioQuip, Compton, CA). A small drop of Loctite Super Glue Gel

Control (Henkel, Düsseldorf, Germany) was applied to the center of the thorax of each bee, followed

by a bCode positioned with its left and right edge parallel to the anteroposterior axis of the bee.

Bees were carefully placed in plastic dishes until they recovered from cold anesthetization, at which

point the glue was dry. After waking, all bees were placed in a large container with Fluon-coated

walls (Insect-a-Slip, BioQuip) where honey was provided ad libitum until placement into a custom

observation hive, described below. At the end of each barcoding day, bees were carefully trans-

ferred into the observation hive.

Behavioral tracking
Hive monitoring
Barcoded bees were housed in a glass-walled observation hive with a one-sided plastic honeycomb

frame, as in Gernat et al., 2018. Bees were unable to access the back side of the honeycomb, and

could exit the hive through a plastic tube to the outside. Colonies were maintained in a dark room

with a heater and humidifier that kept the room at approximately 32˚C and 50% relative humidity.

Infrared light (not visible to bees) was used to illuminate the hive from both the front and back

while capturing hive images. Images were acquired at one-second resolution with a monochrome

Prosilica GX6600 machine vision camera (Allied Vision, Stadtroda, Germany) fitted with a Nikkor AF

135 mm f/2 D DC prime lens (Nikon, Minato City, Japan). Additional details about image acquisition

can be found in Gernat et al., 2018. Images were saved to a redundant array of independent disks,

then copied onto a computing cluster (Biocluster, UIUC) for analysis after the end of each experi-

mental recording period.

Entrance monitoring
Colonies of barcoded bees were given access to the outside via a tube connected through an exte-

rior wall of the Bee Research Facility to an entrance equipped with an automated flight activity moni-

tor as in Geffre et al., 2020. This monitor included a maze to slow down incoming and outgoing

bees, and a Raspberry Pi camera (five megapixel v1.3, Adafruit, New York, NY) that imaged the

maze twice per second from 07:00 until 19:00 daily. The camera was controlled by a Raspberry Pi 2B

computer running the Raspian eight operating system. Images were acquired using the raspistill pro-

gram and the following options: -n -ISO 400 w 2593 h 1400 -cfx 128:128 -x none -e jpg -q 90 -tl 500

t 595000 -bm.

Barcode detection
Barcodes were detected in hive images as in Gernat et al., 2018 and filtered to facilitate subse-

quent behavioral analyses. Filtering involved removal of potential tracking errors, including removal

of barcodes that did not pass read error correction. In addition, records for barcodes that were read

twice in the same image were removed, as were hive image records of the same barcode identified

more than 5 cm/second between successive detections, which are likely to be misidentifications. An

average of 94.51% of detections remained after these filtering steps (range across colonies: 91.94–

97.11%). Finally, the time of death of each bee was estimated using the last time she was observed

for at least 4 min during a 5 min window above the third row of honeycomb cells from the bottom of

the hive; dead bees tend to accumulate below this level prior to being removed by other bees

(Gernat et al., 2018). Records for bees following their time of death were filtered out so behavioral

scores (below) were calculated only over times in which bees were alive.

Jones et al. eLife 2020;9:e62850. DOI: https://doi.org/10.7554/eLife.62850 15 of 28

Research article Ecology Genetics and Genomics

https://doi.org/10.7554/eLife.62850


In entrance monitor images, barcodes were similarly detected as in hive images, but with parame-

ters adjusted for images produced by the Raspberry Pi camera. Fast-moving bees were not filtered

out in entrance images, because bees do move quickly through the entrance monitor and due to the

relatively small number of bees that fit into the maze, spurious fast movement due to bCode decod-

ing errors is unlikely.

Egg-laying detector
Annotated image library
Hive images from three experimental colonies and across 12 different days were used for manual

annotation of egg-laying events. The software Fiji (Schindelin et al., 2012) was used to mark the

bCode positions of all workers laying eggs in an initial set of 1500 hive images, followed by an addi-

tional set of 782 images, each annotated by three independent observers. After the initial identifica-

tion of egg-laying bees in these images, the two seconds before and after each egg-laying event

were also annotated for those bees. Bees not marked as laying eggs with visible bCodes were con-

sidered non-egg-laying for training of the CNN, below.

CNN training and performance estimation
Two convolutional neural networks (CNNs) were trained on the annotated egg-laying images, using

TensorFlow (Abadi et al., 2016). Methods are described fully in Gernat et al., 2020 and are pre-

sented briefly here. The first CNN used images cropped to include just a small rectangular region

behind the barcode of each bee. For egg-laying bees, these images show the honeycomb, because

their abdomen is backed into the comb and thus not visible. For non-layers, these images show the

abdomen. The CNN was trained to differentiate between these two cases. The second CNN was

applied to images of bees that were identified as potential egg-layers by the first CNN. It used

slightly larger images that showed the entire bee and was trained to use information about the

bee’s posture and her immediate surroundings to identify false positives, which were subsequently

filtered out.

Application of a CNN to an image results in a score between 0 and 1 that reflects the likelihood

of that image showing the event of interest. Deciding whether a score is sufficiently high for assum-

ing that the event took place involves thresholding that score. To choose thresholds for each CNN

score and a minimum egg-laying duration, a calibration set of images, which were not used for train-

ing the CNNs, was used to estimate the performance of the egg-laying detector for different thresh-

old combinations. Thresholds were chosen from this calibration set to maximize the detector’s

positive predictive value, then were applied to an independent test set of images that had also never

been seen by the detector to obtain unbiased performance values. Based on the performance esti-

mation on the test set of images, the egg-laying detector had the following performance: 99.71%

accuracy, 35.39% sensitivity, 100% specificity, 100% positive predictive value, and 99.71% negative

predictive value. Minimizing false positives came at a cost to sensitivity, but bees who lay eggs will

likely do so more than once over the course of the experiment and can thus still be identified as

egg-layers (honey bees possess multiple ovarioles, each of which can develop eggs simultaneously

[Hess, 1942]). Egg-laying detections were further aggregated into events: subsequent detections

that occurred within 10 s and 11.2 mm (the width of two honeycomb cells) of one another were

assumed to belong to the same egg-laying event and were merged.

Filtering and annotation of entrance data
Raw detections of bees in the entrance were filtered as in Geffre et al., 2020. Briefly, a bee must

traverse at least one-third the distance of the entrance monitor to be counted, and traversals that

occurred within 10 s of each other were merged into a single event. These traversal events were

then determined to be incoming or outgoing based on the positional coordinates of the bee at the

start and end times of each event. Numbers of foraging trips (Supplementary file 1) was inferred

from series of outgoing and incoming events.

Incoming foraging trips were additionally annotated with trophallaxis data to determine whether

a forager likely returned with nectar. CNNs trained to identify pairs of bees engaged in trophallaxis

as well as the direction of trophallaxis (i.e. which bee was donor and which was recipient;

Gernat et al., 2020) were used to annotate incoming trips for all bees. Parameters used for the
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detector resulted in the following performance metrics based on test images: 88.7% sensitivity,

99.6% specificity, 90.4% positive predictive value, 99.6% negative predictive value, and 88.9% accu-

racy in determining trophallactic role (donor or receiver) of each bee. If a bee was a trophallaxis

donor within 5 min after returning from a trip (Seeley, 2009), with no trophallaxis reception prior to

the donation, that foraging trip was annotated as a nectar trip. Additionally, incoming trips were

manually annotated for pollen on the hindlegs of returning bees for colonies D-F. Combining these

nectar and pollen data for each trip, the proportion of foraging trips with nectar (‘p.nectar’), pollen

(‘p.pollen’) or both (‘p.both’) were calculated per bee in these colonies.

Specialist and generalist scores
In order to characterize the activity of egg-laying and foraging for each bee, two behavioral scores

were created. The ‘specialist’ score describes how specialized an individual was on either egg-laying

(scores near �1) or foraging (scores near +1) relative to other bees in the colony; bees that consis-

tently performed both egg-laying and foraging, or that performed neither behavior, have specialist

scores near 0. The generalist score ranges from 0 to 1 and describes the degree to which an individ-

ual performed both egg-laying and foraging behaviors, differentiating bees with specialist scores

near 0 based on the performance (or not) of egg-laying and foraging. Scores were created by first

counting the number of egg-laying and foraging events per day. Bees were then ranked for each

behavior relative to other bees in the colony on the same day, with tying ranks being assigned the

minimal rank (e.g. if three bees were tied between the 4th and 8th ranked bees, they all received a

rank of 5). Ranks were then normalized by dividing by the maximum rank, so that all ranks were in

the range [0,1]. The normalized rank space for each bee (i.e. normalized egg-laying rank and normal-

ized foraging rank) was then mapped to behavioral scores (and corresponding color space) using the

following formulae in polar coordinates (r,q) on the two-dimensional rank space: generalist score =

(1/2)r2sin42q, specialist score = sin(q-p/4)r4cos42q. Note that the numerical value of the scores has

no biological meaning, but is simply a mapping from rank space to the space of colors as shown in

Figure 2—figure supplement 1.

Selection of bees for sequencing
The median of specialist and generalist scores was weighted to emphasize the latter part of the

experiment; days 15–21 received a weight of 1–7, respectively, and each day’s score was multiplied

by this weight. These scores were used to characterize the overall behavior of each bee in the col-

ony. The rank approach allowed for normalization across days with different overall levels of activity

in the colony, and the median score across days provides an overall assessment of the lifetime

behavior of each bee. These weighted median scores were used to rank all bees, and the top rank-

ing specialists and generalists from two colonies were selected for brain RNA sequencing (RNAseq)

and Assay for Transposase-Accessible Chromatin using sequencing (ATACseq). Scores for each

sequenced bee (n = 45, 25 from colony E, 20 from colony F), as well as total numbers of detected

egg-laying and foraging events per bee, are provided in Supplementary file 2.

To examine variation in behavior within and among groups, principal component analysis (PCA)

was performed on the following set of behavioral traits (see also Supplementary file 2): number of

eggs laid, number of foraging events, proportion of trips with evidence of nectar collection, propor-

tion of trips with evidence of pollen collection, and proportion of trips with evidence of both nectar

and pollen. PCA was performed in R using the prcomp function and plotted using the ggplot2

package.

Tissue dissection and homogenization
At the end of behavioral tracking, bees were collected from each colony and stored at �80˚C. All

colonies were collected between 21:00-23:00 to ensure foragers were inside the hive. For bees

selected for sequencing, abdomens of each bee were carefully removed on dry ice and incubated

for 16 hr at �20˚C in RNA-later ICE (Life Technologies, Carlsbad, CA). Ovaries were imaged and

assessed for ovary development using a 1–5 scale adapted from Hess, 1942 to assign an ovary

score; a score of 3–5 indicates ovary activation. These dissections confirmed that egg-layers and

generalists had activated ovaries, while many foragers did not. Ovary scores, as well as number of

ovarioles as determined from dissections, are given in Supplementary file 2.
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The head of each bee was freeze-dried at 300 milliTorr for 55 min, and whole brains were

removed from the head capsule in a dry ice ethanol bath (Schulz and Robinson, 1999). Dissected

brains were stored individually in 1.5 mL microcentrifuge tubes at �80˚C until extractions.

Brains were individually homogenized in 150 mL phosphate buffered saline (1X PBS, Corning,

Corning, NY, cat. #21–040-CV) with protein inhibitor complex (PIC, Complete Tablets, EDTA-free

Protease Inhibitor Cocktail from Roche, Basel, Switzerland, cat. #04693132001) using a motorized

pestle for 20 s. 50 mL of this homogenate was then pipetted into 450 mL cold PBS+PIC and placed

on ice for ATAC-seq library preparation (see below). The remaining 100 mL homogenate was mixed

with 500 mL RLT buffer (Qiagen, Hilden, Germany) with 1% b-mercaptoethanol for use in the Qiagen

RNeasy Mini Kit RNA extraction protocol (see below).

RNAseq library preparation and sequencing
Whole brain RNA was extracted from the 600 mL homogenate in RLT buffer after an additional 30 s

homogenization following the Qiagen RNeasy Mini Kit protocol, including a DNase (Qiagen) treat-

ment to remove genomic DNA. RNA quantities were determined for each sample using a Qubit

RNA HS Assay Kit (Invitrogen, Carlsbad, CA). High RNA integrity for all samples was confirmed with

Bioanalyzer 2100 RNA Pico chips (Agilent, Santa Clara, CA) prior to library preparation.

RNAseq libraries were constructed and sequenced by the W.M. Keck Center for Comparative

and Functional Genomics at the Roy J. Carver Biotechnology Center (University of Illinois at Urbana-

Champaign). Libraries were constructed from 500 ng RNA per sample using the TruSeq Stranded

mRNA HT kit (Illumina, San Diego, CA) on an ePMotion 5075 robot (Eppendorf, Hamburg, Ger-

many). Libraries were uniquely barcoded, quantified, and pooled for sequencing across 6 lanes with

100 nt single-end sequencing on the Illumina HiSeq 4000.

ATACseq library preparation and sequencing
The 500 mL tissue homogenate was additionally homogenized by aspirating through a 20 gauge nee-

dle followed by a 23 gauge needle five times each. Samples were centrifuged at 500 g for 5 min at

4˚C. Supernatant was removed, and cells were resuspended in 50 mL cold PBS+PIC. 15 mL of this cell

suspension (approximately 1/10th of the total brain,~100k cells) was placed into a new microcentri-

fuge tube, and this was centrifuged at 500 g for 5 min at 4˚C as an additional cell washing step.

Supernatant was removed, and cells were gently resuspended in 50 mL cold lysis buffer prepared as

in Buenrostro et al., 2015. The remainder of the ATACseq library protocol followed

Buenrostro et al., 2015, with the exception of the final purification step, where a 0.8:1 ratio of

Ampure XP beads (Beckman Coulter, Brea, CA) to sample was used to purify each library. In addition

to sample libraries, input libraries were constructed from thoracic genomic DNA from a random bee

from each colony per sequencing batch using 50 ng of genomic DNA (extracted using the Gentra

Puregene Tissue Kit from Qiagen, cat. #158667, following manufacturer’s protocol for DNA purifica-

tion from 25 mg tissue but with 6 mL proteinase K and 4 mL RNase A at the appropriate steps). Geno-

mic DNA was transposed with Nextera Tn5 Transposase (Nextera Kit, Illumina) following the

ATACseq protocol immediately following the cell lysis step (Buenrostro et al., 2015), again using an

0.8:1 Ampure XP bead clean-up at the end of the protocol. A Qubit dsDNA HS Assay Kit (Invitrogen)

was used to quantify each library, and library size and quality was assessed using a Bioanalyzer High-

Sensitivity DNA Analysis kit (Agilent).

ATACseq libraries, including input libraries, were pooled at equal nM concentrations and a bead

clean-up (0.8:1 ratio of Ampure XP beads to sample) was performed on the pool prior to submission

for sequencing. QC on the final pool was performed using qPCR and an AATI Fragment Analyzer by

the Keck Center. Libraries were sequenced across three lanes with 100 nt paired-end sequencing on

the Illumina HiSeq 4000 by the Keck Center.

Data processing and analysis
RNAseq
Sequencing of RNAseq libraries (n = 45, 25 from colony E, 20 from colony F) produced

1,487,641,973 reads which survived quality and adapter trimming using Trimmomatic (version 0.36,

parameters used: ILLUMINACLIP: 2:35:30 LEADING:20 TRAILING:20 MINLEN:30). Trimmed reads

were aligned to the A. mellifera HAv3.1 genome (NCBI accession GCA_003254395.2) using STAR
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(version 2.5.3) and default parameters, resulting in an average of 96.7% reads mapping uniquely.

The program featureCounts from the Subread package (version 1.5.2) was used to assign mapped

reads to gene features from the GFF file from NCBI associated with the A. mellifera HAv3.1 genome.

On average, 84.8% of uniquely mapped reads were assigned to gene features using featureCounts.

Gene counts were imported into R for differential expression analysis using edgeR. Genes with

less than 1 CPM in at least two samples were removed, and remaining count values were normalized

using the TMM method. Gene-wise variances were calculated by estimating tagwise dispersions in

edgeR on filtered gene count matrices for each group separately and plotted using ggplot2. Tag-

wise dispersion estimates were followed by quasi-likelihood F-tests for each pairwise comparison of

groups, with FDR correction for multiple testing. Differentially expressed genes (DEGs, FDR < 0.05)

for each pairwise comparison are given in Supplementary file 3.

ATACseq
ATACseq libraries (n = 48, 25 from colony E, 20 from colony F, three input libraries) produced

1,110,401,018 paired-end reads which survived quality and adapter trimming using Trimmomatic

(version 0.38, parameters used: ILLUMINACLIP: 2:15:10 HEADCROP:10 LEADING:20 TRAILING 20

SLIDINGWINDOW:4:15 MINLEN:30). An average of 98.1% of reads mapped to the A. mellifera

HAv3.1 genome using bwa mem (version 0.7.17, default parameters). Duplicates were marked and

removed prior to further processing using picard (version 2.10.1, average duplication level 30.2%).

Peaks were called from deduplicated BAM files using MACS2 (version 2.1.1, command: callpeak,

with parameters: –nomodel -g 2.5e8 –nolambda –keep-dup all –slocal 10000) using the appropriate

colony and sequencing batch input as control. Peaks were called on each colony and behavioral

group separately, then merged and sorted using BEDTools (version 2.26.0, sort and merge com-

mands). This resulted in a total of 11,614 merged peaks with an average width of 721 bp. Mapped

reads were counted to each peak per individual using featureCounts from the Subread package (ver-

sion 1.5.2). An average of 51.0% of reads were mapped to called peaks.

Peak counts were imported into R for differential accessibility analysis using edgeR. Peaks with

less than 1 CPM in at least two samples were removed, and remaining count values were normalized

using the TMM method. Gene-wise variances were calculated by estimating tagwise dispersions in

edgeR on filtered gene count matrices for each group separately and plotted using ggplot2. Tag-

wise dispersion estimates were followed by quasi-likelihood F-tests for each pairwise comparison of

groups, with FDR correction for multiple testing. Differentially accessible peak (DAP, FDR < 0.05)

results for each pairwise comparison are given in Supplementary file 4.

Functional annotation of differential expression and chromatin
accessibility
Differential expression
Differentially expressed gene (DEG) lists were functionally annotated using Gene Ontology (GO) by

first mapping putative orthologs between A. mellifera and Drosophila melanogaster using reciprocal

best BLASTP hits (e-value cutoff = 1e-5). Only DEGs with putative D. melanogaster orthologs were

included for GO enrichment, and the background list used was all tested genes (those which passed

the minimum expression threshold) with putative D. melanogaster orthologs. Enrichment tests for

biological processes were conducted using GOrilla (Eden et al., 2009) with all significant DEGs

(FDR < 0.05) against the background list. GO enrichment results for all DEG lists are given in

Supplementary file 3.

Differential accessibility
To functionally annotate DAPs, the midpoint coordinates of the 11,614 peaks identified with MACS2

were assigned to genes based on proximity to honey bee gene features (A. mellifera HAv3.1

genome). The following features were considered per gene: promoters (1 kb upstream), introns,

exons, 5’ UTR, 3’ UTR, upstream (10 kb upstream), and downstream (10 kb). Peaks not associated

with any gene feature were classified as intergenic. When peaks were associated with multiple genes

(e.g. the intron of one gene and the promoter of another), they were assigned to individual genes

based on the following priority: promoter (highest priority), exon, 5’ UTR, 3’ UTR, intron, upstream,

downstream (lowest priority). If a peak was present in the same highest priority class for multiple
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genes, it was randomly assigned to one gene. In this way, each peak was assigned to either a single

gene or considered intergenic. Of the 11,614 peaks, 1822 were assigned to the promoter region of

a gene, 776 to exons, 1326 to 5’ UTRs, 273 to 3’ UTRs, 4666 to introns, 1155 to upstream regions,

773 to downstream regions, and 823 peaks were located in intergenic regions.

As before with GO enrichment for DEGs, differentially accessible peaks (DAPs) were functionally

annotated by mapping peak-associated genes to putative orthologs in D. melanogaster using

BLASTP. The background list for enrichment analyses was the list of peaks which met the minimum

accessibility count threshold for analysis and which had putative orthologs in D. melanogaster.

GOrilla (Eden et al., 2009) was used for enrichment tests. GO enrichment results for all DAP lists

are given in Supplementary file 4.

Motif enrichment of DAPs and DEG regulatory regions
TF motif enrichment analysis in this study was performed similarly to the methods described in

Whitney et al., 2014. The overall approach is as follows, with details below. For each TF motif, (1)

genomic windows were scored for the presence of the motif, (2) window scores were combined into

scores for genomic segments of interest, representing either gene regulatory regions or accessibility

peaks, (3) a set of motif targets was created using a fixed cutoff on the segment scores, and (4) a sta-

tistical test for enrichment was performed between segments that were motif targets and those that

were significant in differential analysis.

Motif scores for genomic windows
First, we divided the honey bee genome (version HAv3.1, NCBI accession GCA_003254395.2) into

500 bp windows with 250 bp shifts. We gathered a collection of 223 representative TFs

(Kapheim et al., 2015) and downloaded their DNA binding specificities (motifs) characterized as

position weight matrices (PWMs) from FlyFactorSurvey (Zhu et al., 2011). Separately for each TF

motif, we ran the Stubb algorithm (Sinha et al., 2003) on all genomic windows to score them for the

presence of that TF’s binding sites. Tandem repeats in the windows were masked using the Tandem

Repeat Finder (Benson, 1999) before calculating the Stubb scores to avoid scoring the repeats as

weak binding sites. Since the honey bee genome has significant local G/C heterogeneity

(Sinha et al., 2006), we converted the raw Stubb scores for each window into G/C content-normal-

ized empirical p-values. This was done by determining the rank of each window among all genomic

windows of similar G/C content (when grouped into 20 G/C bins).

Scores for genomic segments
We defined two different collections of genomic segments (accessibility peaks and gene regulatory

regions) to analyze with motif enrichment in this study. Since the genomic segments may overlap

with a variable number of our genomic windows, we defined a length-adjusted motif score for each

segment. This score was calculated using the score of the best scoring window in that segment for

the given motif and the number of windows overlapping the segment, as follows: scseg = 1 – (1 -

pvalbest)
N where, scseg = length-adjusted motif score for the segment, N = number of windows that

overlap with the scoring window, and pvalbest = best G/C normalized empirical p-value among the N

overlapping windows.

Statistical test for TF enrichment
TF enrichment was analyzed for two sets of regions: DAPs (Differentially Accessible Peaks) and DEGs

(Differentially Expressed Genes) (Supplementary file 7).

For analysis of DAPs, the collection of genomic segments was defined as the combination of all

DAPs and randomly selected non-accessible parts of genome that had the same distribution of

lengths as those DAPs. The number of randomly selected genomic segments was set to 10 times the

number of DAP segments. For each motif, the top 200 scoring segments from the collection were

defined as the TF motif target set. Hypergeometric p-values were calculated for each motif-DAP set

pair (Supplementary file 7) to quantify the significance of the overlap between the corresponding

TF motif target set and DAP set.

For DEGs, the collection of genomic segments was the regulatory regions of all genes in the

honey bee annotation. Each regulatory region was defined as 5 kb upstream to 2 kb downstream of
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the transcriptional start site of its gene (http://veda.cs.uiuc.edu/beeMotifScores/). The top 500 scor-

ing segments from the gene universe were selected as the TF motif target set for each motif. Finally,

the significance of the overlap for each motif-DEG set pair (Supplementary file 7) was calculated

with the Hypergeometric p-value.

All p-values were then converted to q-values using the ‘qvalue’ function in the R software pack-

age qvalue (Storey et al., 2019) to control the false discovery rate from multiple hypothesis testing.

For motifs enriched both within DAPs and DEG upstream regions, CentriMo (Bailey and Macha-

nick, 2012) from MEME Suite was used to calculate and plot the probability of motif binding across

2 kb windows centered on the peak summit for DAPs and 7 kb windows (5 kb upstream and 2 kb

downstream of the transcriptional start site (TSS)) for DEGs. These probabilities are shown in

Figure 3B-C.

Individualized gene regulatory network (GRN) analysis
To understand how TFs orchestrate transcriptional changes in the brain, we reconstructed a gene

regulatory network (GRN) model using the ASTRIX approach (Chandrasekaran, 2014;

Chandrasekaran et al., 2011). ASTRIX uses gene expression data to identify interactions between

TFs and their target genes. The ASTRIX algorithm has been previously used to infer brain GRN mod-

els for various organisms including the honey bee (Bukhari et al., 2017; Saul et al., 2017;

Shpigler et al., 2017). These models showed significantly high accuracy in predicting gene expres-

sion changes in the brain and identified TFs that regulate social behaviors.

Here we applied ASTRIX using the gene expression data of the 45 individual bees along with a

list of honey bee TFs as input to identify regulatory interactions. We normalized the transcriptomics

data prior to GRN construction using the ComBat algorithm (Johnson et al., 2007) to minimize

batch and colony effects in the data. The effectiveness of the normalization was checked using PCA.

Any TF predicted to interact with a given target gene by ASTRIX had to pass through two criteria:

(1) share a significant degree of mutual information with the target gene (p-value<10�6), and (2)

explain at least 10% of the variance of the target gene, quantified by Least angle regression algo-

rithm. Similarly, each target gene included in the GRN must be predicted with a correlation of at

least 0.8 by the ASTRIX model using expression levels of TFs.

The GRN model built by ASTRIX predicted 2190 genes with a Pearson’s correlation of 0.8 or

higher using expression levels of TFs. Overall, the GRN inferred by ASTRIX contains 4500 interac-

tions between 190 TFs and the 2190 target genes. The full GRN is in Supplementary file 8.

To determine TFs correlated with specific behaviors, we first identified genes that were strongly

correlated with specific behavior scores across all individuals (FDR p-value of correlation <0.001).

TFs whose targets were over-represented among the behavior-correlated genes were then deter-

mined. Significance of the overlap between the list of behavior-correlated genes with targets of

each TF (‘TF module’) was estimated using the hypergeometric test.

Finally, to identify TF modules associated with expression changes in each individual (‘Individual-

ized TF modules’), genes that were upregulated or downregulated in each individual were identified

using z-transformation. Genes in each individual with z-scores above 2 (i.e. two standard deviations

above mean) or below �2 were considered to be differentially expressed in an individual. This list of

genes was then overlapped with TF modules to identify modules significantly associated with each

individual using the hypergeometric test of overlap.

We used a Random Forests classification algorithm for predicting individual behavioral group

from TF expression levels. A leave-one-out cross validation analysis was performed wherein the algo-

rithm was trained using data from the remaining 44 individuals and then used to predict the behav-

ior of the 45th individual using its TF levels. The model achieved an accuracy of 82% in predicting

behavior. Performance of the model was evaluated by comparison with random shuffling of the

behavior labels. We made predictions 100 times with a different set of shuffled labels and compared

the accuracy of predictions (i.e. total individuals for which behavioral group was correctly predicted)

between the random model and the Random Forest algorithm using a t-test (p=1�10�8). This sug-

gests that TF expression levels can accurately forecast the behavior of the individual, especially for

specialists. The relative importance of each TF in predicting behavior was determined using Out-of-

bag predictor importance estimation, wherein each predictor’s value is permuted and the corre-

sponding impact on model accuracy is determined (importance scores given in Supplementary file

8). The random forest classification algorithm was implemented in MATLAB with default parameters
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for the number of predictors sampled (square root of the number of predictors, in this case 258 TFs)

and default values for the tree depth (n - 1, where n is the training data size).

Selection of candidate TFs involved in specialized phenotypes
Candidate TFs displayed in Figure 5 were drawn from multiple analyses presented in this paper and

in Kapheim et al., 2015. ‘Enriched within DAPs’ indicates enrichment of the TF motif within forager

vs. layer DAPs from the analysis of ATACseq data within this manuscript (see Motif enrichment of

DAPs and DEG promoters and Supplementary file 7). Similarly, ‘Enriched near DEGs’ indicates

enrichment of the TF motif among putative regulatory regions of forager vs. layer DEGs (see Motif

enrichment of DAPs and DEG promoters and Supplementary file 7). ‘Module correlated with behav-

ior’ indicates that TF module activity is significantly correlated with at least one behavioral metric

across individuals (see Individualized Gene Regulatory Network (GRN) analysis and

Supplementary file 8). ‘Group Predictive TF’ indicates the TF is among the 20 most informative for

predicting individual group membership based on TF expression (see Individualized Gene Regula-

tory Network (GRN) analysis and Supplementary file 8). ‘Implicated in eusocial evolution’ indicates

that the TF motif was previously found to be associated with social evolution in Kapheim et al.,

2015.
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