Skip to main content

2018, DOI: doi.org/10.1093/aob/mcy161

Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Seas

Annals of Botany

Lindsay V. Clark, Xiaoli Jin, Karen Koefoed Peterse, Kossanou G. Anzoua, Larissa Bagmet, Pavel Chebukin, Martin Deuter, Elena Dzyubenko, Nicolay Dzyubenko, Kweon Heo, Douglas A. Johnson, Uffe Jørgensen, Jens Bonderup Kjeldsen, Hironori Nagano, Junhua Peng, Andrey Sabitov, Toshihiko Yamada, Ji Hye Yoo, Chang Yeon Yu, Stephen P. Long, and Erik J. Sacks


Abstract

Background and Aims

Miscanthus, a C4 perennial grass native to East Asia, is a promising biomass crop. Miscanthus sacchariflorus has a broad geographic range, is used to produce paper in China and is one of the parents (along with Miscanthus sinensis) of the important biomass species Miscanthus × giganteus. The largest study of M. sacchariflorus population genetics to date is reported here.

Methods

Collections included 764 individuals across East Asia. Samples were genotyped with 34 605 single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (RAD-seq) and ten plastid microsatellites, and were subjected to ploidy analysis by flow cytometry.

Key Results

Six major genetic groups within M. sacchariflorus were identified using SNP data: three diploid groups, comprising Yangtze (M. sacchariflorus ssp. lutarioriparius), N China and Korea/NE China/Russia; and three tetraploid groups, comprising N China/Korea/Russia, S Japan and N Japan. Miscanthus sacchariflorus ssp. lutarioriparius was derived from the N China group, with a substantial bottleneck. Japanese and mainland tetraploids originated from independent polyploidization events. Hybrids between diploid M. sacchariflorusand M. sinensis were identified in Korea, but without introgression into either parent species. In contrast, tetraploid M. sacchariflorus in southern Japan and Korea exhibited substantial hybridization and introgression with local diploid M. sinensis.

Conclusions

Genetic data indicated that the land now under the Yellow Sea was a centre of diversity for M. sacchariflorus during the last glacial maximum, followed by a series of migrations as the climate became warmer and wetter. Overall, M. sacchariflorus has greater genetic diversity than M. sinensis, suggesting that breeding and selection within M. sacchariflorus will be important for the development of improved M. × giganteus. Ornamental M. sacchariflorusgenotypes in Europe and North America represent a very narrow portion of the species’ genetic diversity, and thus do not well represent the species as a whole.

Go to original publication

The LongLab is supported by many public and private partnerships, including the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research, the UK Government's Department for International Development, the U.S. Department of Energy, and the Advanced Research Projects Agency-Energy.

Privacy Policy | Contact Us