Skip to main content

Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection

Science

Amanda P. De Souza, Steven J. Burgess, Lynn Doran, Jeffrey Hansen, Lusya Manukyan, Nina Maryn, Dhananjay Gotarkar, Lauriebeth Leonelli, Krishna K. Niyogi, Stephen P. Long


Abstract

Abstract: Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. This protective dissipation continues after the leaf transitions to shade, reducing crop photosynthesis. A bioengineered acceleration of this adjustment increased photosynthetic efficiency and biomass in tobacco in the field. But could that also translate to increased yield in a food crop? Here we bioengineered the same change into soybean. In replicated field trials, photosynthetic efficiency in fluctuating light was higher and seed yield in five independent transformation events increased by up to 33%. Despite increased seed quantity, seed protein and oil content were unaltered. This validates increasing photosynthetic efficiency as a much needed strategy toward sustainably increasing crop yield in support of future global food security.

Go to original publication

The LongLab is supported by many public and private partnerships, including the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research, the UK Government's Department for International Development, the U.S. Department of Energy, and the Advanced Research Projects Agency-Energy.

Privacy Policy | Contact Us